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To understand howpharmacological interventions can exert their powerful effects on brain function, we need to
understand how they engage the brain’s rich neurotransmitter landscape. Here, we bridgemicroscalemolecular
chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the re-
gional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomog-
raphy, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different
mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dime-
thyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphe-
nidate. Our results reveal a many-to-many mapping between psychoactive drugs’ effects on brain function and
multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are or-
ganized along hierarchical gradients of brain structure and function. Last, we show that regional co-suscepti-
bility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations.
Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-
induced reorganization of the brain’s functional architecture.
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INTRODUCTION
Understanding how the brain orchestrates complex signals across
spatial and temporal scales to support cognition and consciousness
is a fundamental challenge of contemporary neuroscience. By in-
ducing profound but reversible alterations of brain function, psy-
choactive compounds provide neuroscientists with the means to
manipulate the brain without requiring surgical intervention. In
combination with noninvasive brain imaging techniques such as
functional magnetic resonance imaging (fMRI), acute pharmaco-
logical interventions have therefore emerged as a prominent tool
for causal investigation of the relationship between brain and cog-
nitive function in healthy humans (1).

Mind-altering pharmacological agents also play a fundamental
role in modern clinical practice. The invention of anesthesia was a
major milestone in medical history, enabling millions of life-saving

surgeries to take place every year (2). Other drugs that influence the
mind without suppressing consciousness, such as the cognitive en-
hancers modafinil and methylphenidate, have found useful applica-
tions in alleviating the cognitive symptoms of syndromes such as
attention deficit/hyperactivity disorder, narcolepsy, and traumatic
brain injury (TBI) (3–6). More recently, classic and “atypical” psy-
chedelics are increasingly being investigated for their potential to
provide breakthrough avenues to treat psychiatric conditions,
with recent successes in clinical trials holding promise to help mit-
igate the current scarcity of therapies for treatment-resistant depres-
sion and other neuropsychiatric disorders (7–12). For these
convergent reasons, the effects of anesthetics, psychedelics, and cog-
nitive enhancers on brain function are becoming the focus of the
intense investigation, revealing both similarities and differences
between them (13–20).
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Pharmacological agents exert their mind-altering effects by
tuning the brain’s neurotransmitter landscape. Neurotransmitters
engage receptors on neurons’ membranes to mediate the transfer
and propagation of signals between cells, modulate the functional
configurations of neuronal circuits, and ultimately shape
network-wide communication (21–23). Several psychoactive
drugs appear to exert their effects on the mind and brain primarily
through one or few specific neurotransmitters (2): The main action
of the general anesthetics propofol and sevoflurane is the agonism of
γ-aminobutyric acid type A (GABAA) receptors, with additional at-
tenuation of glutamatergic synaptic signaling [mediated by both
AMPA andN-methyl-D-aspartate (NMDA) receptors] (24–28). Ke-
tamine (a dissociative anesthetic at high doses and atypical psyche-
delic at low doses) is an NMDA receptor antagonist (29–31); the
classic psychedelics lysergic acid diethylamide (LSD), psilocybin,
and N,N-Dimethyltryptamine (DMT) are agonists of the serotonin
2A receptor, with a strong dependence between subjective efficacy
and 2A receptor affinity (32–34).

However, in the words of Sleigh and colleagues, “Linking ob-
served molecular actions for any particular drug with its clinical
effects is an abiding pharmacological problem” (35): knowing the
primary molecular target is not sufficient to understand a drug’s
effects on the brain function, for several reasons. First, given the
brain’s intricate, nested feedback loops and recurrent pathways of
connectivity, even a relatively selective drug can end up influencing
unrelated systems beyond what may be apparent from in vitro
studies. Second, most mind-altering compounds are also known
to have an affinity for other receptors. Evidence has been accumu-
lating that multiple neurotransmitter influences may be involved in
both the neural and subjective experiences induced by many con-
sciousness-altering drugs. In the last years, human neuroimaging
studies identified the involvement of the dopaminergic system in
both propofol-induced anesthesia (36) and the subjective effects
of LSD (37). More broadly, a recent large-scale study, combining
receptor expression from transcriptomic data with linguistic pro-
cessing of several thousand subjective reports of psychedelic use,
identified complex multivariate patterns of association between
neurotransmitters and their effects on the mind elicited by a wide
variety of psychedelics, even for putatively selective agents (38). At
the same time, molecularly different compounds can exert similar
effects on both the mind and brain: for instance, LSD and (subanes-
thetic) ketamine can produce subjectively similar effects and
changes in terms of structure-function coupling and the complexity
of brain activity—despite acting on different pathways (39). This
suggests both divergent and convergent effects of different pharma-
cological agents on the brain’s rich neurotransmitter landscape.

Last, the human brain exhibits rich patterns of anatomical, func-
tional, cytoarchitectonic, and molecular variations (40–44). These
patterns also extend to the regional distribution of different neuro-
transmitter receptors and transporters, which vary widely not only
in terms of their affinity, time scales, and downstream effects on
neuronal excitability but also in terms of their distribution across
regions, layers, and neuron types (21, 22, 45). Therefore, our knowl-
edge of how a drug influences neurotransmission must take into
account the neuroanatomical distribution of its target neurotrans-
mitters—an essential step toward explaining how different neuro-
transmitters mediate the capacity of different drugs to shape the
functional and computational properties of the brain’s architecture
(21, 23, 46).

Here, we sought to address this question in a data-driven way,
mapping the neurotransmitter landscape of drug-induced alter-
ations in the brain’s functional connectivity (FC). To do so, we le-
veraged two unique datasets: (i) a recently assembled collection of in
vivo maps of regional expression from 19 different receptors and
transporters, obtained from positron emission tomography (PET)
scanning of more than 1200 total individuals, providing the most
detailed information about neuromodulators and their spatial dis-
tribution available to date (23); and (ii) resting-state fMRI (rs-fMRI)
data acquired under the effects of the serotonergic psychedelics LSD
(47), psilocybin (48), DMT (49), ayahuasca (50), and 3,4-methyle-
nedioxymethamphetamine (MDMA) (51); subanesthetic doses of
ketamine (acting as an “atypical psychedelic”) (52) as well as anes-
thetic doses (acting as a “dissociative anesthetic”); the cognitive en-
hancers modafinil (53) and methylphenidate (6); and the
anesthetics sevoflurane (54) and propofol (55, 56) (which we com-
pared against preanesthetic baseline and postanesthetic recovery);
representing a total of 382 sessions of pharmacological MRI from
224 distinct subjects and 10 distinct pharmacological agents.
Through pharmacologically modulated rs-fMRI, we can character-
ize a drug’s effects on the brain’s spontaneous activity, without the
interference of any specific task (1).

Thus, our goal was to obtain a comprehensive mapping between
the cortical distributions of neurotransmitters and a set of diverse
psychoactive pharmacological agents (covering the range from an-
esthetics to psychedelics), in terms of their effects of FC. There have
been other studies looking at the relationships between brain
changes induced by one or few psychoactive drugs, and one or
few neurotransmitter systems (36, 37, 57–62), and a previous
effort considering how changes in cerebral blood flow induced by
different psychiatric medications depend on the distribution of re-
ceptors (63). However, to our knowledge, this is the largest fMRI
study to date not only in terms of the number, variety, and
potency of psychoactive pharmacological agents included but also
in terms of the breadth and coverage of neurotransmitter systems
considered.

RESULTS
Characterization of drug-induced functional
reorganization and receptor distributions
To establish a relationship between neurotransmitter systems and
pharmacologically induced reorganization of the brain’s functional
architecture, we combine two sets of neuroimaging data, each col-
lected from multiple studies. On one hand, we characterize drug-
induced functional reorganization as the changes in FC obtained
by contrasting rs-fMRI at baseline and under the acute effect of a
psychoactive drug. We considered the general anesthetics propofol
(two independent datasets, both at a dosage sufficient to induce loss
of responsiveness) and sevoflurane; the cognitive enhancers moda-
finil andmethylphenidate; ketamine, acting as both atypical psyche-
delic (at subanesthetic doses) and as a dissociative anesthetic (18,
31); and the serotonergic psychedelics LSD, psilocybin, DMT, aya-
huasca, and MDMA (Fig. 1). For sevoflurane and both propofol da-
tasets, we considered two contrasts: drug versus pre-induction
baseline, and drug versus postanesthetic recovery (recovery data
were not available for ketamine). We followed the same preprocess-
ing and denoising procedure for each dataset, to ensure compara-
bility (see Supplementary Methods and table S1).
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Fig. 1. Overview of receptors and pharmacological rs-fMRI data. (A) For each psychoactive drug, its pattern of pharmacologically induced functional reorganization is
quantified as the average (across subjects) of the within-subject difference in regional FC weighted degree (sum of each region’s positive connections) between task-free
fMRI scans at baseline and under the drug’s effects. The result is a map of 100 cortical regions with 15 drug-related contrasts. (B) Neurotransmitter systems are mapped
with PET with radioligands for 15 receptors and 4 transporters, resulting in a map of 100 cortical regions with 19 neurotransmitters. (C) A region-by-region matrix of
pharmacological co-susceptibility is obtained by pairwise correlation of the regional patterns of drug-induced FC changes across all concatenated subject-wise delta
maps. A region-by-region matrix of neurotransmitter coexpression is obtained by pairwise correlation of the regional patterns of neurotransmitter expression, concat-
enated across all 19 receptor and transporter PET maps. These two matrices are significantly correlated (Spearman’s correlation across N = 4950 edges) even after re-
moving the exponential relationship with Euclidean distance between regions.
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On the other hand, we consider the cortical distribution of 15
neurotransmitter receptors and 4 transporters, obtained from in
vivo PET (23). Overall, nine neurotransmitter and neuromodula-
tory systems (“neurotransmitters” for short) are covered: dopamine
(D1, D2, and DAT), noradrenaline (NAT), serotonin (5-HT1A, 5-
HT1B, 5-HT2A, 5-HT4, 5-HT6, and 5-HTT), acetylcholine (α4β2,
M1, and VAChT), glutamate (mGluR5 and NMDA), GABA
(GABAA), histamine (H3), cannabinoid (CB1), and opioid
(MOR) (Fig. 1, A and B) (23). Both rs-fMRI and PET maps were
parcellated into 100 functionally defined regions according to the
Schaefer atlas (64).

Shared chemoarchitecture and shared response to
pharmacological perturbations
Receptors and transporters shape the way that neurons respond to
neurotransmission and neuromodulatory influences. In turn,

psychoactive drugs exert their effects (primarily) by acting on neu-
rotransmitters and neuromodulators. Therefore, we reasoned that
everything else being equal, regions that express similar patterns
of receptors and transporters should exhibit similar patterns of sus-
ceptibility to drug-induced functional reorganization.

To address this question, we computed matrices of pharmaco-
logical co-susceptibility and neurotransmitter coexpression
between pairs of regions, by correlating respectively the regional
patterns of drug-induced FC changes (across all concatenated
subject-wise delta maps) and the regional patterns of neurotrans-
mitter expression (across all 19 receptor and transporter PET
maps). To account for spatial autocorrelation in molecular and
FC attributes, we regressed out from both matrices the exponential
trend with Euclidean distance (65).

Supporting our hypothesis, we found that pharmacological co-
susceptibility is significantly correlated with neurotransmitter

Fig. 2. PLS analysis reveals spatially covarying patterns of pharmacologically induced functional reorganization and neurotransmitter expression. (A) PLS
analysis relates two data domains by correlating the variables across brain regions and subjecting this to singular value decomposition. This results in multiple latent
variables: linear weighted combinations of the original variables (neurotransmitter weights and drug weights) thatmaximally covary with each other. (B) Latent variables
are ordered according to effect size (the proportion of covariance explained between neurotransmitter expression and drug-induced functional reorganization they
account for) and shown as colored dots. (C) The first two latent variables (PLS1 and PLS2) were statistically significant, with respect to the spatial autocorrelation-pre-
serving null model shown in gray (10,000 permutations), with PLS1 also surviving FDR correction for multiple comparisons. The first latent variable accounted for 57% of
covariance, and the second latent variable accounted for 28%. Neurotransmitter (drug) scores are defined as the projection of the original neurotransmitter density (drug-
induced FC changes) matrix onto the neurotransmitter (drug) weights, such that each brain region is associated with a neurotransmitter and drug score. By design,
neurotransmitter and drug scores correlate highly. Both PLS1 and PLS2 were also identified as statistically significant when tested against an alternative null model,
whereby participants’ conditions (drug versus no drug) were randomly permuted before averaging, repeating this procedure 1000 times (fig. S3).
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profile similarity: the extent to which two regions’ FC patterns are
similarly affected by perturbations induced by different psychoac-
tive drugs, is predicted by the extent to which they coexpress neu-
rotransmitter receptors and transporters: ρ = 0.34, P < 0.001 after
regressing out the effects of Euclidean distance (Fig. 1C). In other
words, regions that exhibit shared chemoarchitecture also respond
similarly across pharmacological perturbations. To account for po-
tential confounds due to partial volume effects, we repeated this
analysis but instead of regressing out exponential distance, we re-
gressed out a matrix of similarity between regions’ nongray-
matter tissue probability (see Supplementary Methods and fig. S1).

Multivariate receptor-drug associations
The previous analysis revealed a relationship between large-scale
patterns of neurotransmitter expression, and large-scale patterns
of functional susceptibility to pharmacological perturbations, com-
plementing previous work that identified relationships between in-
dividual drugs and individual receptors. However, neither of these
two approaches captures the full richness of the two datasets used
here. To obtain a synthesis between these two approaches, we used a
multivariate association technique, partial least squares correlation
[PLS; also known as a projection to latent structures (66)], which
enabled us to identify multivariate patterns of maximum covariance
between drug-induced effects on FC, and the cortical distributions
of neurotransmitter expression (67).

This analysis indicated the presence of two statistically signifi-
cant latent variables (linear weighted combinations of the original
variables) relating pharmacologically induced functional reorgani-
zation to neurotransmitter profiles, together accounting for nearly
85% of covariance. Significance was assessed against autocorrela-
tion-preserving spin-based null models, embodying the null hy-
pothesis that drug effects and neurotransmitters are spatially
correlated with each other purely because of inherent spatial auto-
correlation (68, 69), followed by false discovery rate (FDR) correc-
tion for multiple comparisons (Fig. 2). The first latent variable
remained significant even after FDR correction. We further cross-
validated this result against spatial dependence by fitting amodel on
a training set of spatially adjacent brain regions, and testing the
model on a held-out set of regions that are as far from the training
set nodes as possible, and therefore likely divergent in annotation
properties; out-of-sample r = 0.46 for PLS1 and 0.54 for PLS2,
both P < 0.001 from t test against spin-based null distributions
(fig. S2).

For each latent variable, each brain region is associated with a
neurotransmitter and drug score. In turn, neurotransmitter
(drug) loadings are defined as the correlation between the PLS-
derived score pattern and each neurotransmitter’s density of expres-
sion (resp., drug-induced FC changes) across brain regions. Taking
into account the first latent variable (PLS1), drug loadings showed a
distinction of pharmacological effects into two groups, with all an-
esthetics (except ketamine) on one side, and both ketamine datasets
dominating the opposite side, together with LSD, ayahuasca, and
modafinil (Fig. 3A). Neurotransmitter loadings divided the recep-
tors from transporters: at the positive end (orange), the noradrena-
line, serotonin, and acetylcholine transporters [with the dopamine
transporter following closely, but narrowly including zero in its 95%
confidence interval (CI)]; all receptors except NMDA were instead
at the negative end (blue), although some included zero in their
CI (Fig. 3B).

Pertaining to the second latent variable (PLS2), neurotransmitter
loadings mainly identified a monoamine-rich end (with dopamine
and serotonin), although 5-HT1b occupied the opposite end.
However, the drug loadings were less clearly discernible, with mod-
afinil alone at one end, and a mixture of propofol, psychedelics, and
both ketamine datasets at the other end. Both neurotransmitter and
drug scores markedly separated dorsal and ventral aspects of the
brain for this second latent variable (Fig. 3).

Alignment of pharmacologically induced alterations with
functional, anatomical and molecular hierarchies
Neurotransmitter and drug scores (whose spatial similarity PLS is
designed to maximize) provide information about the regional dis-
tribution of neurotransmitter-drug associations. Neurotransmitters
and drugs whose regional distribution correlates positively with the
score pattern covary with one another in the positively scored
regions, and vice versa for negatively scored regions.

PLS1 scores correspond to the main axis of covariance between
neurotransmitter expression and pharmacologically induced func-
tional reorganization. For both drug and receptor scores, we ob-
served that their regional distribution reflected the brain’s
organization into intrinsic resting-state networks (RSNs) (70),
setting apart visual and somatomotor cortices from association cor-
tices (Figs. 3 and 4). It is possible that the correspondence of PLS1
scores with RSNs may be in part driven by the fact that these net-
works are predicated in terms of functional neuroimaging, which
we also used to characterize drug-induced functional reorganiza-
tion in our data. Therefore, we next sought to determine whether
our data-driven topographic patterns reflect other cortical gradients
of variation in terms of functional, anatomical, and molecular attri-
butes. To this end, we considered intracortical myelination obtained
from T1w/T2w MRI ratio (43), evolutionary cortical expansion ob-
tained by comparing human and macaque (71), the principal com-
ponent of variation in gene expression from the Allen Human Brain
Atlas transcriptomic database (“AHBA PC1”) (44, 72), the principal
component of variation in task activation from the NeuroSynth da-
tabase (“NeuroSynth PC1”) (44, 73), and the principal gradient of
FC (42). Since pharmacological interventions exert their effects on
the brain via the bloodstream, we also included a map of cerebral
blood flow (40). Last, we included a recently derived gradient of
the regional prevalence of different kinds of information, from re-
dundancy to synergy (74).

We observed significant correlations (assessed against spin-
based null models and corrected for multiple comparisons)
between each cortical hierarchy and both neurotransmitter and
drug scores for PLS1 (except for PLS1 neurotransmitter scores
versus NeuroSynth PC1; FDR-corrected Pspin = 0.056) (Fig. 4).
The scores for PLS2 instead identified a ventral-dorsal pattern of
regional variation (Fig. 3 and fig. S4), which did not significantly
correlate with any of the canonical gradients of a hierarchical orga-
nization (all FDR-corrected P > 0.05 against spin-based null
models). As an alternative avenue to characterize this second, non-
hierarchical cortical pattern, we quantified its spatial similarity with
123 brain maps pertaining to cognitive and psychological processes,
obtained from NeuroSynth. Significant FDR-corrected correlations
(assessed against spin-based null models) were observed for both
PLS2 drug and neurotransmitter scores, in particular pertaining
to emotion-related terms (“emotion” and “valence”) on the positive
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end—consistent with the involvement of limbic and salience net-
works in PLS2 (fig. S4).

By comparing the score pattern to multiple cortical hierarchies,
we demonstrate that the relationship between psychoactive drug
effects and neurotransmitter receptor densities fits into the
broader sensory-association hierarchy of the cortex (40). Given
the presence of multiple significant predictors for PLS1 drug and
neurotransmitter scores, we then applied dominance analysis (see
Materials and Methods) to take into account all cortical hierarchies
simultaneously (fig. S5). For PLS1 neurotransmitter scores, we
found relatively even contributions from the various hierarchies,
whereas, for the PLS1 drug scores, the principal gradient of FC
was the predictor with the greatest percentage of relative importance
(fig. S5).

Neurotransmitter landscape of pharmacologically induced
functional reorganization
Taking into account the first two PLS latent variables shows how
each drug-specific pattern of pharmacologically induced functional
reorganization can be interpreted in terms of contributions from
different receptors (note that sign is arbitrary) (Fig. 5A; quantifica-
tion of the respective alignment between each drug and each neu-
rotransmitter in the joint space is provided in Fig. 5B). As already
shown in Fig. 3, the first latent variable revealed a stark division
between transporters and receptors, which discriminates between
traditional anesthetics and other psychoactive substances. In
terms of pharmacological alterations, the non-monoaminergic
end of the second latent variable loaded onto drugs with relatively
stronger effects on subjective experiences (the higher doses of anes-
thetic, including ketamine, LSD, and MDMA). However, methyl-
phenidate and subanesthetic ketamine also loaded onto this end

Fig. 3. PLS scores and loadings from significant latent variables. (A and B) Scores and loadings for PLS1. (C and D) Scores and loadings for PLS2. Brain plots: Drug
scores (top row) and neurotransmitter scores (bottom row) for each brain region are obtained by projecting the original neurotransmitter and drug data back onto the PLS
analysis–defined drug/neurotransmitter weights, indexing the extent to which a brain region expresses covarying drug/neurotransmitter patterns. In turn, neurotrans-
mitter (drug) loadings are defined as Pearson’s correlation between each neurotransmitter’s density of expression (drug-induced FC changes) across brain regions and
the PLS analysis–derived score pattern and plotted as z scores. Error bars indicate a 95% confidence interval (CI), and color indicates the direction of the effect: positive
(orange), negative (blue), or null (gray). Same-colored loadings and scores covary positively, whereas opposite-colored drugs and scores covary negatively. The label
“ketamine 1” refers to the subanesthetic dose, and “ketamine 2” is the higher (anesthetic) dose. The label “propofol 1” refers to the Cambridge dataset, and “propofol 2” is
the Western dataset.
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Fig. 4. Correspondence between the principal axis of drug-neurotransmitter scores and functional, anatomical, and molecular hierarchies. (A) Cortical distri-
bution of drug scores for PLS1, and their association with intrinsic resting-state networks. (B) The radial plot represents the absolute value of Spearman’s spatial corre-
lation between PLS1 drug and neurotransmitter scores, and each of the seven cortical hierarchies obtained from different neuroimaging modalities (note that the myelin
and AHBA PC1 maps are reversed with respect to the remaining hierarchies). *, FDR-corrected Pspin < 0.05. Results were replicated after regressing out of PLS1 drug and
neurotransmitter scores the regional prevalence of nongray matter tissue (fig. S6).
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of the second latent variable. Altogether, we find that the first latent
variable captures a strong relationship between drug interventions
and receptor systems, that is both biologically relevant and aligns
with the functional organization of the brain.

Co-susceptibility to pharmacological and pathological
alterations
Last, we wondered if the functional co-susceptibility of different
regions to transient pharmacological perturbations may provide a
functional proxy for their co-susceptibility to structural perturba-
tions resulting from different neurological, neurodevelopmental,
and psychiatric disorders. To this end, we combined 11 spatial
maps of cortical thickness abnormalities made available by the En-
hancing Neuroimaging Genetics through Meta-Analysis
(ENIGMA) consortium (65, 75, 76): 22q11.2 deletion syndrome, at-
tention-deficit/hyperactivity disorder, autism spectrum disorder,
idiopathic generalized epilepsy, right temporal lobe epilepsy, left
temporal lobe epilepsy, depression, obsessive-compulsive disorder,
schizophrenia, bipolar disorder, and Parkinson’s disease. For sim-
plicity, we refer to diseases, disorders, and conditions as “disorders”
throughout the text. The cortical abnormality maps summarize
contrasts between more than 17,000 adult patients and 22,000 con-
trols collected following identical processing protocols to ensure
maximal comparability (75, 76).

Following the same procedure used to obtain the region-by-
region matrices of pharmacological co-susceptibility and neuro-
transmitter coexpression (Fig. 1C and Fig. 6A), we obtained a
region-by-region matrix of co-susceptibility to disorder-induced
cortical abnormality by correlating the regional patterns of cortical
abnormality across all 11 disorders (Fig. 6C) (65). Correlating this

matrix of regional co-susceptibility to disease-associated perturba-
tions against the previously derived matrix of regional co-suscepti-
bility to pharmacological perturbations, we found a statistically
significant relationship (Spearman’s ρ = 0.31, P < 0.001 after re-
gressing out the effect of Euclidean distance) (Fig. 6D). This
result goes beyond a recent demonstration that molecular similarity
and disorder similarity are correlated (65), by showing that a corre-
lation also exists between different kinds of perturbations: anatom-
ical and pharmacological.

Having ascertained that susceptibility to pharmacological and
pathological alterations is positively correlated, we next sought to
identify a low-dimensional representation of this joint co-suscepti-
bility. Whereas the aim of PLS analysis is to enable a many-to-many
mapping between variables (67), here, our aim was to find common
patterns that describe how regions vary in their overall co-suscept-
ibility to perturbations, rather than focusing on specific perturba-
tions. In other words, this is a dimensionality reduction problem,
rather than multivariate association. Therefore, we resorted to a
nonlinear dimensionality reduction algorithm, diffusion map em-
bedding (42, 77), which enabled us to obtain joint gradients of var-
iation from pharmacological and disease-associated co-
susceptibility using a recently developed method for network
fusion (78).

When applying diffusion map embedding to the matrix of phar-
macological co-susceptibility only, we found that the first two gra-
dients of variation in regional pharmacological susceptibility
coincide with the two well-known principal gradients of FC identi-
fied by Margulies et al. (42) (Fig. 6B): the first gradient sets apart
unimodal from transmodal cortices, whereas the second gradient
is anchored in visual cortex at one end, and somatomotor cortex

Fig. 5. Joint mapping of neurotransmitters and pharmacological agents. (A) Biplot: Each drug is represented as a point reflecting its projection onto the first two
latent variables of the PLS analysis, color-coded based on its effects on subjective experience (anesthetic, psychedelic, or other psychoactive). Each neurotransmitter
receptor and transporter is represented as a vector in the same two-dimensional space defined by the first two latent variables, color-coded by loading onto PLS1 as
shown in Fig. 3 (orange for positive; blue for negative; and gray if the 95% CI intersects zero). For both propofol (Ppfl) and ketamine (keta), the number refers to the
dataset, with 1 identifying the weaker dose, and 2 identifying the stronger dose. A qualitatively similar mapping between drugs and neurotransmitters on the first two
latent variables is observed when the methylphenidate dataset (which was the only dataset obtained from patients rather than healthy controls) is excluded (fig. S7).
Figure S8 shows the drugs and neurotransmitters separately. (B) Alternative representation of the mapping between neurotransmitters and pharmacological agents in
the same space: Each cell in the heatmap indicates the alignment between the corresponding drug and neurotransmitter (absolute cosine of the angle between their
vectors, in the space of the first two latent variables).
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at the other end. This observation suggests that co-susceptibility to
pharmacological perturbations recapitulates intrinsic functional ar-
chitecture, as well as co-susceptibility to disorder-induced structur-
al perturbations.

When considering the gradients obtained from regional joint
susceptibility to pharmacological and neuropsychiatric alterations,
we found that the main axis of variation coincides with the first gra-
dient of pharmacological susceptibility, as well as the well-known
principal gradient of FC (42), setting apart unimodal cortices (so-
matomotor and visual networks) from transmodal cortices (espe-
cially default and frontoparietal networks), reminiscent of the
PLS1 scores (Fig. 6E and fig. S9A). The second gradient instead is
anchored in anterior dorsolateral cortices at one end (especially per-
taining to the frontoparietal network) and ventromedial and tem-
poral cortices at the other end, spanning limbic and salience/ventral
attention networks, reminiscent of the PLS2 scores (Fig. 6F and fig.
S9B). To characterize this second cortical gradient of joint suscept-
ibility, we quantified its spatial similarity with 123 NeuroSynth
maps (Fig. 6G). We observed several significant FDR-corrected cor-
relations (assessed against spin-based null models), including with
valence and emotion maps, which had also emerged as significant
correlates of the PLS2 drug and neurotransmitter scores—consis-
tent with the prominent involvement of limbic and salience net-
works. In addition, however, the second gradient of joint
pharmacological-pathological susceptibility correlated with meta-
analytic maps pertaining to psychiatric conditions and symptoms,

such as “loss,” “stress,” “fear,” “psychosis,” and “anxiety” (Fig. 6G),
highlighting the relevance of this second gradient for pathology.
Last, we show how disorders and pharmacological alterations map
onto the space defined by the two joint gradients of co-susceptibil-
ity, by plotting the correlations between the gradients and each
pattern of drug-induced functional reorganization and disorder-as-
sociated anatomical reorganization (Fig. 6H).

Validation and additional analyses
To mitigate both physiological and motion-related confounds, our
denoising pipeline included scrubbing and regression of 12 motion
parameters and 10 principal components from white matter and ce-
rebrospinal fluid. Nevertheless, since several of our pharmacological
interventions were accompanied by significant differences in head
motion (mean framewise displacement; table S2), we also repeated
our analysis after implementing three different strategies for further
controlling the potential confounding effects of motion. First, we
regressed the FC change at each region observed in each dataset,
against the standardized difference in mean framewise displace-
ment observed for that dataset, as a way of further controlling for
any differences in motion across datasets that may be confounding
our analysis. The resulting PLS1 also primarily separated anesthetics
from other psychoactive substances and neurotransmitter receptors
versus transporters, as observed in our main analysis, with trans-
porters covarying with cognitive enhancers and most psychedelics
in primary sensory and motor regions, and receptors primarily

Fig. 6. Co-susceptibility to pharmacological and pathological alterations. (A) Similarity of regional susceptibility to pharmacological alterations (same as Fig. 1C, but
for the Desikan-Killiany atlas). (B) First two principal gradients of regional susceptibility to pharmacological alterations obtained from diffusion map embedding. (C)
Regional co-susceptibility to neuropsychiatric and neurological alterations of cortical thickness. (D) Brain regions that are similarly affected by pharmacology, in
terms of functional reorganization, are also similarly affected across disorders, in terms of cortical thickness abnormalities (Spearman’s correlation across N = 2278
edges). This relationship persists after regressing out the exponential trend with Euclidean distance, and also after regressing out the matrix of similarity of regional
nongray matter tissue probability (fig. S11). (E and F) First two principal gradients of regional joint susceptibility to pharmacological and neuropsychiatric and neuro-
logical alterations obtained from diffusion map embedding. Together, these first two gradients account for nearly half of the variation in regional co-susceptibility (fig.
S10). (G) Significant spatial correlations (Spearman’s ρ) between gradient 2 and 123 term-based meta-analytic maps from NeuroSynth. Significance is assessed against
spatial autocorrelation-preserving null models and corrected for multiple comparisons using the FDR. (H) The plot shows each drug-induced functional reorganization
map (colored dots) and each disease-associated cortical alterationmap (vectors), in the space of the two principal gradients of joint susceptibility, obtained by correlating
the corresponding cortical patterns. Adhd, attention deficit/hyperactivity disorder; asd, autistic spectrum disorder; ocd, obsessive-compulsive disorder; gen., generalized;
RTE, right temporal lobe epilepsy; LTE, left temporal lobe epilepsy; a.u., arbitrary units.
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covarying with traditional anesthetics in transmodal association
cortices (fig. S12). PLS1 scores also remained significantly aligned
with the cortical hierarchy after motion regression (fig. S13).
Second, we replicated our results with low-motion subjects only.
We show that analogous hierarchically organized mappings
between different drug types and receptors versus transporters
can be observed when any subjects with mean framewise displace-
ment greater than 0.3 in either baseline or drug scan are excluded
from the analysis (fig. S14). Third, we further show that our main
results are replicated if we only include datasets for which the dif-
ference in mean framewise displacement between baseline and drug
scans is not statistically significant (table S2), namely, the Cam-
bridge propofol dataset, the Cambridge propofol recovery dataset,
the psychedelic ketamine dataset, modafinil, methylphenidate, aya-
huasca, MDMA, and psilocybin (which therefore include each type
of drug: anesthetic, psychedelic, and cognitive enhancer). Again, we
find that our results replicatewhat we observed in ourmain analysis,
with a principal latent variable organized along the unimodal-trans-
modal axis separating receptors and transporters (fig. S15). The
convergence of these three distinct approaches to motion correction
in replicating the results of our main analysis demonstrates that our
results are robust to the potential confounding effects of motion and
remain stable even under conservative strategies for motion
correction.

To further ensure the robustness of our main results, we also rep-
licated them using different cortical parcellations: the anatomically
defined Lausanne-114 (fig. S16) (79) and Schaefer-232, which com-
bines 200 cortical and 32 subcortical regions (fig. S17). Both showed
an analogous unimodal-transmodal PLS1 separating receptors from
transporters and traditional anesthetics from other psychoactive
drugs, and a ventromedial-dorsolateral pattern for PLS2. The posi-
tive association between neurotransmitter coexpression and phar-
macological co-susceptibility was also preserved when subcortical
structures were included (fig. S18). The subcortical portion of the
PLS1 scores for the Schaefer-232 PLS analysis identified an anteri-
or-posterior pattern, separating the caudate and putamen from the
thalamus, hippocampus, and amygdala (fig. S17). A similar anteri-
or-posterior division of subcortical structures (though with the an-
terior thalamus diverging from the posterior) was also observed
when repeating the PLS analysis exclusively on the 32 subcortical
regions of interest (ROIs) (fig. S19). This analysis revealed a mono-
amine- (dopamine- and serotonin-)dominated principal latent var-
iable, positively associated with the drugs having the strongest
effects (fig. S19).

DISCUSSION
Here, we characterized how mind-altering pharmacological agents
engage the brain’s rich neurotransmitter landscape to exert their
effects on brain function. We developed a computational frame-
work to relate the regional reorganization of fMRI FC induced by
10 different mind-altering drugs, and the cortical distribution of 19
neurotransmitter receptors and transporters obtained from PET
(23). This approach allowed us to discover large-scale spatial gradi-
ents relating pharmacologically induced changes in FC to the un-
derlying neurotransmitter systems. By relating microscale
molecular chemoarchitecture and macroscale functional reorgani-
zation induced by drugs with potent acute effects on the mind,
our results provide a first step to bridge molecular mechanisms

and their effects on subjective experience, cognition, and behavior
via their effects on the brain’s functional architecture.

Using our computational framework, we found that psychoac-
tive drugs can be understood in terms of contributions from mul-
tiple neurotransmitter systems. We also found that anesthetics and
psychedelics/cognitive enhancers are largely opposite in terms of
their association with neurotransmitters in the cortex, although
not without exceptions. The effects of mind-altering drugs are to-
pographically organized along multiple hierarchical gradients of
brain function, anatomy, and neurobiology. Last, we found that
co-susceptibility to pharmacological perturbations recapitulates
co-susceptibility to disorder-induced structural perturbations.

The diverse mapping between drug-induced functional reorga-
nization and neurotransmitters that we recovered (Fig. 5) clearly
shows the power of our multivariate approach for detecting both
expected and previously unidentified relationships between drugs
and neurotransmitters. On one hand, we found only weak align-
ment between ketamine and NMDA receptors, which it is known
to antagonize, and between MDMA and the serotonin 2A receptor,
despite this being one of its main known targets. On the other hand,
MDMA did align strongly with serotonin and dopamine transport-
ers, which it is known to block. Likewise, noradrenaline transporter
blocking is one of the main mechanisms of action of methylpheni-
date, and we also observed high alignment between the two.We also
observed that both the serotonergic psychedelics and the traditional
GABAergic anesthetics vary in their alignment with their main mo-
lecular targets (5HT-2A and GABAA receptors, respectively). Such
multifaceted results can emerge from numerous biological mecha-
nisms. Not only are many of the drugs that we considered known to
have varied molecular targets, beyond the primary ones through
which they exert their effects; in addition, even when a drug has
low affinity for a given receptor when considered in isolation, it
may still indirectly engage the corresponding neurotransmitter
system through complex downstream effects, which abound in the
brain. In addition, the highest alignment with GABAA receptor ex-
pression was found for the lowest dose of anesthetics—possibly sug-
gesting that, as the dose increases, secondary and downstream
targets may begin to exert more prominent effects, thereby contrib-
uting to a more diffuse mapping onto the full set of neurotransmit-
ters. As a data-driven technique designed to identify many-to-many
mappings rather than focusing on individual ones (67), PLS is es-
pecially suitable for detecting such multifaceted effects.

Overall, our analytic approach can contribute to uncovering the
large-scale downstream effects of each drug on various neurotrans-
mitter systems in a systematic, data-driven fashion. Although the
associations identified by our multivariate mapping are correlation-
al and cannot distinguish agonism from antagonism, they can
inform future causal experimentation. For instance, upon finding
that a drug’s effects spatially covary with the regional density of a
receptor that is not among its known molecular targets in vitro, it
may indicate an indirect involvement of this neurotransmitter
system. This hypothesis generated by our data-driven method
may be then probed causally by assessing whether the drug’s
effects on the brain and cognition persist if the receptor in question
is blocked.

The present results add another dimension to recent work using
a similar multivariate approach to relating gene expression of recep-
tors with subjective reports of psychedelic experiences, which also
found widespread involvement of multiple receptors (38). In
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addition, the drugs we considered here have profound effects on the
mind after a single acute dose, from cognitive enhancement to hal-
lucinations to the suppression of consciousness together. Such far-
reaching effects are accompanied by sometimes marked repercus-
sions on brain function and dynamics: It stands to reason that
such widespread reorganization would not leave many neurotrans-
mitter pathways unaffected—even those that are not directly in-
volved in generating the altered state in question.

The broadly opposite characterization of traditional anesthetics
and most psychedelics is aligned with their respective effects on the
complexity of brain activity and connectivity, which is reduced by
GABAergic anesthesia but increased by LSD, ayahuasca, and psy-
chedelic doses of ketamine, as well as other psychedelics (13, 17,
39, 50, 80–86). Similarly, psychedelics (including subanesthetic ke-
tamine) and anesthetics were recently shown to exert opposite
effects on structure-function coupling: whereas anesthesia increases
the dependence of brain activity on the underlying structural
network, LSD, psilocybin, and subanesthetic ketamine induce
fMRI BOLD signals that are increasingly liberal with respect to
the underlying structural network organization (39). We found
that anesthetic doses of ketamine alignmore closely with psychedel-
ic (subanesthetic) doses of ketamine than with anesthetics such as
propofol and sevoflurane. Although the ketamine-anesthetized vol-
unteers were behaviorally unresponsive, as for the traditional anes-
thetics, they subsequently reported a wide range of vivid
hallucinatory experiences (87). Thus, as per ketamine’s characteri-
zation as a dissociative anesthetic, in subjective terms, their con-
sciousness was not suppressed but rather profoundly altered in a
manner more similar to psychedelics than anesthetics. Therefore,
the neurotransmitter signatures of the two levels of ketamine
align with the molecular effects and subjective effects, rather than
with the behavioral effects.

The main division we observed in terms of neurotransmitters is
between receptors and transporters, which displayed opposite asso-
ciations with drug-induced effects. Specifically pertaining to PLS1,
we found that transporters covary with cognitive enhancers and
most psychedelics in primary sensory and motor regions, whereas
receptors covary with GABAergic anesthetics in transmodal associ-
ation cortices.

Hierarchical organization of pharmacologically induced func-
tional reorganization stands to reason based on prior evidence:
Both psychedelics and anesthetics have been shown to have
potent effects on the activity and connectivity of higher-order asso-
ciation cortices, and the default mode network in particular (13, 47,
48, 54, 87–89). In addition, serotonergic psychedelics also exert
powerful influences on the visual cortex at the other end of the cor-
tical hierarchy (47), and, as a result, they have been shown to induce
a “flattening” of the principal gradient of FC (90).

Having established that the effects of mind-altering drugs are hi-
erarchically organized, the question then becomes: Why should
mind-altering drugs exert their effects in such a hierarchically orga-
nized fashion? Multiple aspects of neuroanatomy may contribute to
the emergence of this spatial pattern, manifested as a difference in
pharmacological response between unimodal and transmodal cor-
tices. First, the principal component of variation of receptor expres-
sion is itself organized along the brain’s sensory-to-association
hierarchical axis (21)—and so is, for instance, the distribution of
the serotonin 2A receptor, the main direct target of serotonergic
psychedelics (23). Second, transmodal cortices differ from

unimodal cortices in terms of increased excitability (91) and a pre-
dominance of feedback-efferent connections (21): Combined with
their higher diversity of receptor expression across layers (21), these
regions may be especially susceptible to receive and amplify multi-
ple pharmacological influences—another reason why their re-
sponse will differ from the response of unimodal regions.

Third, unimodal and transmodal cortices also differ in terms of
cerebral blood flow. Since ultimately the bloodstream is how drugs
reach their regional molecular targets, greater cerebral blood flow in
transmodal than in unimodal cortices may be one of the factors
shaping a unimodal-transmodal spatial pattern of response to phar-
macological intervention, due to the different availability of the
drug (although it should be noted that some drugs can also have
effects on heart rate and neurovascular coupling). Last, another
feature differentiating unimodal from transmodal cortices is that
the latter have higher neuron and synapse density (74, 92) and
tend to have more numerous, far-reaching, and diversely distribu-
ted anatomical connections (93), as well as the highest prevalence of
synergistic (complementary) interactions with the rest of the brain
(74). Thus, any effects that are exerted in transmodal regions may be
more likely to quickly reverberate throughout the whole cortex,
compared with effects that are primarily exerted in the unimo-
dal cortex.

To summarize, we conjecture that the unimodal-transmodal
spatial organization of pharmacologically induced changes in FC
may be at least in part explained by several relevant differences
between the microscale and macroscale architecture of unimodal
and transmodal cortices: Transmodal association cortices are espe-
cially diverse in their receptor profiles, and rich in some key recep-
tors; in addition to being more susceptible to pharmacological
intervention due to higher expression of receptors, blood flow is
poised to bring greater amounts of drug to these very cortices,
and once these cortices’ activity is perturbed, the perturbation can
reverberate widely, thanks to their widespread and diverse connec-
tivity. Together, these factors are likely to impart differences in the
way that unimodal and transmodal cortices respond to pharmaco-
logical intervention, which becomes reflected in the unimodal-
transmodal spatial pattern that we observed. In other words, since
unimodal and transmodal cortices differ along dimensions that are
relevant for pharmacology, it stands to reason to observe that phar-
macological responses exhibit a pattern of unimodal-transmodal
spatial differentiation. Of course, the drugs we included were
chosen precisely because of their powerful effects on cognition
and subjective experience, so it stands to reason that their effects
should align with the division between primary and higher-order
cortices (which also aligns with the principal component of varia-
tion obtained from NeuroSynth term-based meta-analysis). In
other words, drugs whose effects on FC are less selective for
higher versus lower ends of the cortical hierarchy may simply be
less likely to exert mind-altering effects of the kind that we chose
to focus on in this work.

More broadly, we found that pairs of regions that are more
similar in terms of their susceptibility to pharmacologically
induced FC changes are also more similar in their susceptibility
to cortical alterations associated with a variety of neuropsychiatric
disorders. This observation suggests a broader pattern of both phar-
macological (acute) and neuroanatomical (chronic) susceptibility
across regions. We speculate that this joint susceptibility may be
related to regional relevance for cognitive function: We found
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that this joint vulnerability can be understood in terms of two mul-
timodal principal gradients of variation over the cortex: one of them
resembling the principal gradient of FC (and principal latent vari-
able of neurotransmitter-drug association) and the other anchored
in the dorsolateral prefrontal cortex at one end, and ventromedial
and temporal cortex at the other. The first, hierarchically organized
gradient of association between disorder co-susceptibility and co-
susceptibility to pharmacologically induced functional reorganiza-
tion sheds light on recent evidence, which indicated that the prin-
cipal gradient of neurotransmitter expression is particularly
relevant for predicting a wide spectrum of disease-specific cortical
morphology (65). Specifically, the results presented here show that
this observation extends to the effects of engaging different recep-
tors. This interpretation is further supported by our own evidence
that pharmacological perturbations are shaped by neurotransmitter
coexpression. Pertaining to the second, ventromedial-dorsolateral
gradient of susceptibility, our NeuroSynth contextualization
showed that it coincides with meta-analytic maps related to
emotion and valence but also to loss, stress, fear, psychosis, and
anxiety. We note that the NeuroSynth fMRI database is indepen-
dent of the ENIGMA datasets of cortical morphometry that con-
tributed to the generation of our joint gradients. Therefore, the
relevance of these terms as potential symptoms or precipitating
factors for mental illness provides important validation for our
second gradient of joint susceptibility. Together, our two joint gra-
dients delineate cognitively relevant dimensions of cortical suscept-
ibility to pharmacological and pathological perturbations. The
results reported here open previously unidentified possibilities for
data-driven, multivariate mapping between the brain’s high-dimen-
sional neurotransmitter landscape and the effects of potent phar-
macological interventions on the brain’s functional architecture.
Crucially, neuropsychiatric disorders and candidate pharmacologi-
cal treatments for them ultimately need to exert their effects on cog-
nition and behavior by influencing brain function. In this light, it is
intriguing that susceptibility to disorder-related cortical abnormal-
ities correlates with susceptibility to pharmacological intervention.
This observation suggests that regions that are structurally most vul-
nerable to disease (which presumably in turn shapes their function-
al architecture) may also be the ones that are most susceptible to
rebalancing their functional organization by an appropriate
choice of pharmacological intervention. This work represents the
necessary first step toward identifying previously undiscovered
and perhaps unexpected associations between drugs and neuro-
transmitters, as well as elucidating the known ones in a data-
driven manner.

Our joint mapping of pathological and pharmacological pertur-
bations, in the space of the two principal gradients of co-suscepti-
bility, represents a proof of principle for how future work can build
on our approach. For example, although the pharmacological agents
that we included were primarily chosen in virtue of their potent
mind-altering effects, rather than their relevance for psychiatric
treatment, we still identified an intriguing proximity of schizophre-
nia-related anatomical alterations with the functional effects of ke-
tamine (particularly in terms of alignment with the first joint
gradient), reminiscent of the evidence that ketamine can have “psy-
choto-mimetic” effects (30). By considering patterns of functional
rather than structural abnormality associated with pathology, future
work may leverage our computational framework to identify drugs

—or combinations thereof—whose functional effects are best suited
to counteract those of a given disorder.

Limitations and future directions
Although themain strength of our study is our extensive coverage of
both neurotransmitters and pharmacological data, it is important to
acknowledge that neither is complete: In particular, our sample did,
by no means, exhaustively include all mind-altering drugs that have
been studied: Prominent additions for future work may include the
psychedelic kappa opioid receptor agonist salvinorin A (94), the
sedative dexmedetomidine, an alpha-2 receptor agonist (95)—but
also alcohol or caffeine, arguably the two most widely used psycho-
active substances. We also acknowledge that, owing to the complex-
ity of these study designs and the challenges of their
implementation, the pharmacological datasets included here come
from limited samples that have been studied before, and future rep-
lication in different datasets with the same drugs (as we have done
here for propofol) would also be desirable. In particular, small
samples can increase variability and may consequently produce
less reliable results; therefore, replicating the present results in
larger samples will be an important consideration for future work.

The datasets included here come from different sources and lo-
cations and were acquired under a variety of conditions.We endeav-
ored to mitigate scanner and acquisition differences by re-
preprocessing all data with the same pipeline, and following
uniform denoising procedures, rather than following the various
pipelines originally used by each group. Further mitigation of the
acquisition differences between datasets should come from our
within-subject design in healthy individuals [except for the methyl-
phenidate dataset, which comes from patients with TBI (6); al-
though we showed that our results remain qualitatively the same
if this dataset is excluded; fig. S7]. Nevertheless, we cannot
exclude some residual influence of such differences on our results
(e.g., eyes open versus closed; the ayahuasca data were acquired at a
lower field strength of 1.5 T; the TRs varied from 1.671 s for mod-
afinil, to 3 s for psilocybin; table S1). In addition, the drug doses
used were different across studies, so our comparisons combine to-
gether differences in drug type and drug dose, which will need to be
further disentangled in future, dedicated studies.

Similar considerations about the differences between datasets
apply for the PET data, as discussed in detail in the original publi-
cation collecting the PET maps (23). Likewise, the coverage of neu-
rotransmitter receptors and transporters, though the most extensive
available to date and obtained in vivo rather than postmortem, is far
from exhaustive. The same limitation also applies to the ENIGMA
disorder data (75): Many more disorders, diseases, and conditions
exist than the ones considered here. And although the ENIGMA
consortium provides datasets from large samples with standardized
pipelines, ensuring robust results, the patient populations may
exhibit comorbidities and/or be undergoing treatment. In addition,
the available maps do not directly reflect changes in tissue volume,
but rather the effect size of patient-control statistical comparisons,
in terms of only one low-resolution cortical-only parcellation.

In addition to the inevitable limitations of analyzing large-scale
datasets frommultiple sites, there are also limitations of our analytic
framework. Although we report a macroscale spatial association
between neurotransmitter expression and pharmacologically
induced functional reorganization that is statistically unexpected
on the basis of autocorrelation alone, caution is warranted when

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Luppi et al., Sci. Adv. 9, eadf8332 (2023) 14 June 2023 12 of 19

D
ow

nloaded from
 https://w

w
w

.science.org on July 31, 2023



drawing inferences from statistical results to the underlying biology.
We used linear models that assume independence between observa-
tions—an assumption that mostly does not hold in the brain, given
the possibility of nonlinear effects in how drugs exert their effects on
the brain’s intricately connected neurotransmitter systems. To mit-
igate this limitation, throughout this work, we triangulated toward a
robust statistical mapping between neurotransmitters and drugs by
combining cross-validation and different conservative null models
that account for the spatial dependencies between regions (44).

Another limitation is that, due to data availability and well-doc-
umented differences in PET radioligand uptake between cortical
and subcortical structures (23, 96, 97), our work wasmainly restrict-
ed to the cortex—although we did replicate our results when cortex
and subcortex were combined. The thalamus, brainstem, and other
subcortical structures are prominently involved in mediating
cortico-cortical interactions and the effects of psychedelics, anes-
thetics, and cognitive enhancers (11, 13, 36, 54, 95, 98–102). We
expect that future work suitable data for whole-brain coverage
(ideally including cerebellum and brainstem)may provide richer in-
sights than the sum of their individual contributions.

More broadly, the other main limitation of this work is its cor-
relational nature: Receptors and drugs were mapped in separate
cohorts of individuals, and identifying spatially correlated patterns
does not guarantee the causal involvement of the neurotransmitters
in question. Likewise, although our pharmacological manipulations
induced behavioral and subjective effects (e.g., loss of responsive-
ness for the anesthetics), the present work did not seek to provide
a direct link between drugs, their molecular targets in the brain, and
their behavioral effects. Experimental interventions will be required
to conclusively demonstrate causal involvement and elucidate the
underlying neurobiological pathways from receptors to behavior.
However, we emphasize that our results generate empirically test-
able hypotheses about which neurotransmitters may be involved
with the macroscale effects of different drugs on brain function.
These hypotheses may be tested experimentally, but also in silico:
Whole-brain computational modeling is becoming increasingly
prominent as a tool to investigate the causal mechanisms that
drive brain activity and organization in healthy and pathological
conditions (103, 104). Crucially, the more biologically inspired
models (e.g., dynamic mean field) can also be enriched with
further information, such as regional myelination (91), or the re-
gional distribution of specific receptors and ion channels obtained
from PET or transcriptomics (57, 58, 105), to reflect neurotransmit-
ter influences. This approach may complement experimental ma-
nipulations, making it possible to systematically evaluate the
causal effects of combinations of different neuromodulators on
the brain’s FC.

Here, we mapped the functional chemoarchitecture of the
human brain, by relating the regional changes in fMRI FC
induced by 10 different mind-altering drugs, and the regional dis-
tribution of 19 neurotransmitter receptors and transporters ob-
tained from PET. This work provides a computational framework
to characterize how mind-altering pharmacological agents engage
the brain’s rich neurotransmitter landscape to exert their effects
on brain function. Our analytic workflow could find application
across the breadth of human cognitive and clinical neuroscience,
with the potential to shed light on alterations of neurotransmission
underlying neuropsychiatric conditions, which are known to
involve a combination of anatomical and neurochemical

imbalances. More broadly, our framework could also find fruitful
application for data-driven prediction of the effects of candidate
drugs on the brain: The mapping between neurotransmitters and
pharmacological effects on brain function offers an indispensable
biological lens that can reveal neurotransmitter targets for therapeu-
tic intervention. In summary, we demonstrate that diverse patterns
of neurotransmitter expression are variously engaged by an array of
potent pharmacological interventions, ultimately manifesting as a
large-scale hierarchical axis. Collectively, these results highlight a
statistical link between molecular dynamics and drug-induced reor-
ganization of functional architecture.

MATERIALS AND METHODS
Experimental design
PLS analysis was used to relate regional neurotransmitter density to
pharmacologically induced FC changes in a multivariate fashion.
PLS analysis is an unsupervised multivariate statistical technique
that decomposes relationships between two datasets (in our case,
neurotransmitter density with n being the regions and r being the
neurotransmitters, Xnxr, and drug-induced FC changes, Ynxd, with n
being the regions and d being the drugs) into orthogonal sets of
latent variables with maximum covariance, which are linear combi-
nations of the original data (67). In other words, PLS finds compo-
nents from the predictor variables (100 × 19 matrix of regional
neurotransmitter receptor and transporter density scores) that
have maximum covariance with the response variables (100 × 15
matrix of regional changes in FC induced by different drugs). The
PLS components (i.e., linear combinations of the weighted neuro-
transmitter density) are ranked by the covariance between predictor
and response variables so that the first few PLS components provide
a low-dimensional representation of the covariance between the
higher dimensional data matrices. Thus, the first PLS component
(PLS1) is the linear combination of the weighted neurotransmitter
density scores that have a brain expression map that covaries the
most with the map of regional FC changes.

This is achieved by z-scoring both data matrices column-wise
and applying singular value decomposition on the matrix Y′X,
such that

ðY 0XÞ0 ¼ USV 0 ð1Þ

where Ug×t and Vt×t are orthonormal matrices consisting of left and
right singular vectors and St×t is a diagonal matrix of singular values.
The ith columns of U and V constitute a latent variable, and the ith
singular value in S represents the covariance between singular
vectors. The ith singular value is proportional to the amount of co-
variance between neurotransmitter density, and drug-induced FC
changes captured by the ith latent variable, where the effect size
can be estimated as the ratio of the squared singular value to the
sum of all squared singular values. In the present study, the left sin-
gular vectors (that is, the columns of U ) represent the degree to
which each neurotransmitter contributes to the latent variable
and demonstrate the extracted association between neurotransmit-
ter density and drug-induced FC changes (neurotransmitter
weights). The right singular vectors (that is, the columns of V ) rep-
resent the degree to which the FC changes contribute to the same
latent variable (term weights). Positively weighed neurotransmitters
covary with positively weighed drug-induced changes, and
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negatively weighed neurotransmitters covary with negatively
weighed drug-induced changes.

Scores at each brain region for each latent variable can be com-
puted by projecting the original data onto the singular vector
weights. Positively scored brain regions are regions that demonstrate
the covariance between the prevalence of positively weighted neu-
rotransmitters and positively weighted drug-induced effects (and
vice versa for negatively scored brain regions). Loadings for each
variable were computed as Pearson’s correlation between each indi-
vidual variable’s regional distribution (neurotransmitter density
and drug-induced FC changes) and the PLS analysis–derived neu-
rotransmitter score pattern. Squaring the loading (a correlation)
equals the percentage of variance shared between an original vari-
able and the PLS analysis–derived latent variable. Variables with
high absolute loadings are highly correlated to the score pattern, in-
dicating a large amount of shared variance between the individual
variable and the latent variable. We confirmed that PLS1 explained
the largest amount of variance by testing across a range of PLS com-
ponents (between 1 and 15) and quantifying the relative variance
explained by each component.

Summarizing pharmacological effects on brain function
For each subject at each condition (drug and baseline), the denoised
regional blood oxygen level–dependent (BOLD) signals from fMRI
(see the Supplementary Materials) were parcellated into 100 cortical
regions according to the local-global functional parcellation of
Schaefer and colleagues (64). The parcellated regional BOLD
signals were then correlated pairwise across regions, obtaining a
region-by-region matrix of “functional connectivity”; after remov-
ing negative-valued edges (i.e., applying an absolute threshold of
zero to the FC matrix), the regional weighted degree of FC (weight-
ed degree) was measured for each region. The regional change in FC
weighted degree between the drug and no-drug conditions was then
quantified for each subject. Last, for each dataset, we computed the
mean (across subjects) of the FC weighted degree deltas. Therefore,
each pharmacological intervention was summarized as one vector
of regional FC deltas (Fig. 1). We also repeated our analysis with
alternative parcellation schemes: 114 cortical regions from the Lau-
sanne atlas (79); 32 subcortical regions from the Tian atlas (106);
and a combination of the same 32 subcortical regions, with 200 cor-
tical regions from the Schaefer atlas. For the latter, cortex and sub-
cortex were z-scored separately before being combined for the PLS
analysis, due to thewell-documented differences in PET radioligand
uptake between cortical and subcortical structures (65, 97).

Receptor maps from positron emission tomography
Receptor densities were estimated using PET tracer studies for a
total of 19 receptors and transporters, across nine neurotransmitter
systems, recently made available by Hansen and colleagues (23).
These include dopamine (D1, D2, and DAT), noradrenaline
(NAT), serotonin (5-HT1A, 5-HT1B, 5-HT2A, 5-HT4, 5-HT6,
and 5-HTT), acetylcholine (α4β2, M1, and VAChT), glutamate
(mGluR5 and NMDA), GABA (GABAA), histamine (H3), cannabi-
noid (CB1), and opioid (MOR). Volumetric PET images were reg-
istered to the MNI-ICBM 152 nonlinear 2009 (version c,
asymmetric) template, averaged across participants within each
study, then parcellated, and receptors/transporters with more
than one mean image of the same tracer (5-HT1b, D2, and
VAChT) were combined using aweighted average. See the dedicated

article by Hansen et al. (23) for detailed information about each
PET dataset and their respective acquisition and limitations, and
see Description of Supplementary References Excel file for a list
of studies that provided data pertaining to each receptor and
transporter.

Hierarchical organization
We quantified the spatial similarity of our latent variable scores,
with several canonical maps of hierarchical brain organization (“ca-
nonical brain hierarchies”) derived frommultimodal neuroimaging.
We considered the anatomical gradient of intracortical myelination
obtained from T1w/T2w MRI ratio (43); evolutionary cortical ex-
pansion obtained by comparing human and macaque (71); the
principal component of variation in gene expression from the
AHBA transcriptomic database (https://human.brain-map.org/),
referred to as “AHBA PC1” (40, 44, 72); the principal component
of variation in task activation fromNeuroSynth, an online meta-an-
alytic tool that synthesizes results from more than 15,000 published
fMRI studies by searching for high-frequency keywords that are
published alongside fMRI voxel coordinates, using the volumetric
association test maps (referred to as “NeuroSynth PC1”) (40, 44, 73);
the map of cerebral blood flow (40); the principal gradient of vari-
ation in FC (42); and a recently derived gradient of the regional
prevalence of different kinds of information, from redundancy to
synergy (74).

Contextualization with NeuroSynth meta-analytic maps
As an alternative avenue to characterize cortical patterns, we quan-
tified their spatial similarity with 123 term-based meta-analytic
brain maps from the NeuroSynth database. The probabilistic
measure reported by NeuroSynth can be interpreted as a quantita-
tive representation of how regional fluctuations in activity are
related to psychological processes. Although more than 1000
terms are reported in NeuroSynth, we focus primarily on cognitive
function and therefore limit the terms of interest to cognitive and
behavioral terms (44, 73). The resulting 123 terms, range from um-
brella terms (attention and emotion) to specific cognitive processes
(visual attention and episodic memory), behaviors (eating and
sleep), and emotional states (fear and anxiety).

ENIGMA cortical vulnerability data
Patterns of cortical thickness were collected for the available 11 neu-
rological, neurodevelopmental, and psychiatric disorders from the
ENIGMA consortium and the enigma toolbox (https://enigma-
toolbox.readthedocs.io/en/latest/) (65, 75, 76): 22q11.2 deletion
syndrome, attention-deficit/hyperactivity disorder, autism spec-
trum disorder, idiopathic generalized epilepsy, right temporal
lobe epilepsy, left temporal lobe epilepsy, depression, obsessive-
compulsive disorder, schizophrenia, bipolar disorder, and Parkin-
son’s disease. See Description of Supplementary References Excel
file for a list of studies that provided data pertaining to each
disease and disorder. The ENIGMA consortium is a data-sharing
initiative that relies on standardized image acquisition and process-
ing pipelines, such that disorder maps are comparable (76). Struc-
tural T1-weighted MRI scans acquired at the various contributing
sites were segmented using standardized and publicly available
ENIGMA imaging protocols. These automated protocols, based
on FreeSurfer (version 5.3) segmentations, are fully validated and
allow maximal uniformity and comparability across sites. Together,
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more than 17,000 patients were scanned across the 13 disorders,
against almost 22,000 controls. The values for each map are z-
scored effect sizes (Cohen’s d) of cortical thickness in patient pop-
ulations versus healthy controls. Imaging and processing protocols
can be found at http://enigma.ini.usc.edu/protocols/.

For every brain region, we constructed an 11-element vector of
disorder abnormality, where each element represents a disorder’s
cortical abnormality at the region. For every pair of brain regions,
we correlated the abnormality vectors to quantify how similarly two
brain regions are affected across disorders. This results in a region-
by-region matrix of “disorder co-susceptibility” (65).

Gradients from diffusion map embedding
We used the BrainSpace toolbox (77) to obtain gradients from dif-
fusion map embedding. A joint network of disease and drug co-sus-
ceptibility was obtained from the network fusion procedure of
Paquola et al. (78), through horizontal concatenation of matrices
and production of a node-to-node affinity matrix using row-wise
normalized angle similarity.

We then used diffusion map embedding, a nonlinear manifold
learning technique based on the graph Laplacian (77), to obtain a
low dimensional representation of the joint drug and disorder sus-
ceptibility. A single parameter α controls the influence of the sam-
pling density on the manifold (α = 0, maximal influence; α = 1, no
influence). Following extensive previous work using this approach
with neuroimaging data (42, 77), we set α = 0.5 to retain the global
relations between data points in the embedded space. The ability to
combine global and local geometry differentiates diffusion maps
from global-only methods, such as principal components analysis
and multidimensional scaling (78). A small number of components
can be identified on the basis of decreasing eigenvalues. The decay
of each eigenvector obtained from the diffusion map embedding
provides an overall measure of the connectivity between nodes
along the axis delineated by its spatial distribution on the brain
(gradient).

Statistical analysis
The statistical significance of the variance explained by each PLS
model was tested by permuting the response variables 1000 times
while considering the spatial dependency of the data by using
spatial autocorrelation-preserving permutation tests, termed spin
tests (68, 69). Parcel coordinates were projected onto the spherical
surface and then randomly rotated and original parcels were reas-
signed the value of the closest rotated parcel (10,000 repetitions).
The procedure was performed at the parcel resolution rather than
the vertex resolution to avoid upsampling the data. In PLS analysis,
the spin test is applied to the singular values (or equivalently, the
covariance explained) of the latent variables, producing a null dis-
tribution of singular values. This is done by applying PLS analysis to
the original X matrix and a spun Y matrix. The spin test embodies
the null hypothesis that neurotransmitter density and drug-induced
FC changes are spatially correlated with each other only because of
inherent spatial autocorrelation. The P value is computed as the
proportion of null singular values that are greater in magnitude
than the empirical singular values. Thus, these P values represent
the probability that the observed spatial correspondence between
neurotransmitter density and drug-induced FC changes could
occur by randomly correlating maps with comparable spatial
autocorrelation.

As an alternative null model, we also derived a null distribution
of singular values by repeating the PLS analysis 1000 times, with a
null Y matrix obtained by randomly permuting subjects’ drug and
no-drug conditions. The P values obtained against this null distri-
bution represent the probability that the observed spatial corre-
spondence between neurotransmitter density and drug-induced
FC changes could occur by chance even in the absence of
drug effects.

Spatial similarity between brain maps was quantified in terms of
Spearman’s correlation, and statistical significance was assessed
against a spin-based null model with preserved spatial autocorrela-
tion, as described above (68, 69, 107). Correction for multiple com-
parisons was implemented using the FDRmethod of Benjamini and
Hochberg (108).

We also implemented a distance-dependent cross-validation
method (65): The correlation between drug scores and neurotrans-
mitter scores was cross-validated by constructing a training set with
75% of brain regions closest in Euclidean distance to a randomly
chosen source node, with the testing set comprising the remaining
25% of regions that are farthest away from the training set nodes.
The out-of-sample mean is then assessed against a permuted null
model (1000 repetitions). This technique attempts to account for
the spatial autocorrelation of the brain by testing the fitted model
on a held-out set of brain regions that are spatially distant and there-
fore likely divergent in annotation properties (44).

To further account for the potential confound of signal from
nongray matter tissue (which can give rise to partial volume
effects by contaminating the gray matter signal) (109), we used
the probability of nongray matter tissue in each region as a regres-
sor. We parcellated an a priori gray matter tissue probability map
(110) to obtain the prevalence of gray matter in each ROI (mean
of the gray matter probability of its constituent voxels). The com-
plement of this map represents the probability of nongray matter
tissue in each region, which we used as an estimate of each
region’s susceptibility to contamination from nongray matter
tissue signal. This probability map was then regressed out of the
latent variables, before computing their spatial correlation with cor-
tical hierarchy maps, as a control analysis. Similarly, when correlat-
ing matrices, a control analysis was performed by using as regressor
a matrix of pairwise similarity between regions’ probability of con-
taining nongray-matter tissue, obtained as the outer product of the
z-scored vector of nongray matter tissue probability with itself.

When considering multiple cortical hierarchies, we also applied
dominance analysis to evaluate their relative contribution to our
latent variable scores. Dominance analysis seeks to determine the
relative contribution (“dominance”) of each independent variable
to the overall fit (adjusted R2) of the multiple linear regression
model (23, 111). This is done by fitting the same regression
model on every combination of predictors (2p − 1 submodels for
a model with p being the predictors). Total dominance is defined
as the average of the relative increase in R2 when adding a single
predictor of interest to a submodel, across all 2p − 1 submodels.
The sum of the dominance of all input variables is equal to the
total adjusted R2 of the complete model, from which a percentage
of relative importance is obtained by partitioning the total effect size
accounted for by each predictor. Therefore, unlike other methods of
assessing predictor importance, such as methods based on regres-
sion coefficients or univariate correlations, dominance analysis ac-
counts for predictor-predictor interactions and is interpretable.
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