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a b s t r a c t 

Small world topologies are thought to provide a valuable insight into human brain organisation and consciousness. 

However, functional magnetic resonance imaging studies in consciousness have not yielded consistent results. 

Given the importance of dynamics for both consciousness and cognition, here we investigate how the diversity 

of small world dynamics (quantified by sample entropy; dSW-E 1 ) scales with decreasing levels of awareness 

(i.e., sedation and disorders of consciousness). Paying particular attention to result reproducibility, we show 

that dSW-E is a consistent predictor of levels of awareness even when controlling for the underlying functional 

connectivity dynamics. We find that dSW-E of subcortical, and cortical areas are predictive, with the former 

showing higher and more robust effect sizes across analyses. We find that the network dynamics of intermodular 

communication in the cerebellum also have unique predictive power for levels of awareness. Consequently, we 

propose that the dynamic reorganisation of the functional information architecture, in particular of the subcortex, 

is a characteristic that emerges with awareness and has explanatory power beyond that of the complexity of 

dynamic functional connectivity. 
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. Introduction 

Recent neuroscience endeavours have approached the intractable

uestion of consciousness via notions of complexity ( Carhart-

arris et al., 2014 ; Northoff and Huang, 2017 ; Tononi et al., 2016 ;

arley et al., 2020 ). A complex system can be defined as a large

etwork of components that exhibit collective emergent properties

 Mitchell, 2011 ). In fact, consciousness researchers have focused their

ttention not only on the activity of brain regions; but also the statistical

elationship between them (i.e., “connectivity ”) and the resulting emer-

ent global properties ( Tononi et al., 2016 ; Edelman and Gally, 2013 ;

i Perri et al., 2016 ; Stamatakis et al., 2010 ). 

A prominent paradigm to investigate the complexity of brain connec-

ivity is given by network science ( Rubinov and Sporns, 2010 ; Watts and

trogatz, 1998 ). Using the mathematical framework of Graph The-

ry Analysis (GTA), network science permits an investigation into the
∗ Corresponding author at: Division of Anaesthesia, School of Clinical Medicine, Ad

K. 

E-mail address: eas46@cam.ac.uk (E.A. Stamatakis) . 
1 dSW-E = dynamic small world entropy 
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opological/architectural characteristics of a network by defining its

omponents as nodes and their interactions as edges. Watts and Stro-

atz (1998) brought this approach to the forefront by showing that

omplex real-life networks of the most disparate kinds tend to show

 “small-world ” (SW) architecture. Computationally, the SW network

tructure can be created by taking a regular lattice network (where

eighbouring nodes are connected) and randomly rewiring some edges.

his particular network configuration simultaneously retains many clus-

ers of connected nodes, whilst the rewired edges enable information

o travel easily across long distances in the network (i.e., an average

short path length ”). The SW network is appealing to neuroscience

s it putatively describes the fundamental local-global interaction of

 limited number of brain regions and connections, and thus would

llow complexity to emerge in a cost-effective manner ( Northoff and

uang, 2017 ; Sporns and Zwi, 2004 ; van den Heuvel et al., 2008 ;

assett and Bullmore, 2017 ). In fact, SW topology has been shown to

avour synchronisation, richness of possible states, self-organisation,
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riticality, resistance to insult, efficient and cost-effective information

ransfer ( Papo et al., 2016 ; Tan and Cheong, 2017 ; Barahona et al., 2002 ;

akagi, 2018 ; Takagi, 2020 ). 

Given these characteristics, theorists have conjectured that SW or-

anisation is relevant to consciousness ( Northoff and Huang, 2017 ;

porns and Zwi, 2004 ; Carhart-Harris and Friston, 2019 ; Buzsáki, 2007 ;

lkire et al., 2008 ). In fact, SW is a topology (i.e., interrelation of con-

tituent parts) that indicates simultaneous localised-clustered (segre-

ated) and efficient-global (integrated) information flow ( Northoff and

uang, 2017 ; Rubinov and Sporns, 2010 ; Bassett and Bullmore, 2017 ;

ord et al., 2017 ; Deco et al., 2015 ). Theoretically, dynamic integra-

ion would underpin the sense of unified experience, whilst segregation

f specialised information would underlie the vast variety of percep-

ual and phenomenal distinctions that can be experienced ( Northoff and

uang, 2017 ; Tononi et al., 2016 ; Sporns and Zwi, 2004 ; Dehaene and

hristen, 2011 ; Baars, 2005 ). Therefore, SW has been thought to un-

erlie the spatial temporal characteristics necessary for the emergence

f awareness ( Northoff and Huang, 2017 ; Buzsáki, 2007 ; Alkire et al.,

008 ). 

The empirical side, conversely, has proposed several measures of

W architecture ( Humphries and Gurney, 2008 ; Muldoon et al., 2016 ;

elesford et al., 2011 ); but has not yielded the same level of consistency

s its theoretical counterpart. Research in the functional network SW of

naesthesia has shown increases in SW during unconsciousness, in op-

osition to what would have been expected from theory ( Northoff and

uang, 2017 ; Schroter et al., 2012 ; Monti et al., 2013 ). Others show

ecreases in SW during anaesthesia and disorders of consciousness

 Luppi et al., 2019 ; Barttfeld et al., 2015 ). Still more papers report incon-

lusive SW results in consciousness-relevant conditions ( Achard et al.,

012 ; Crone et al., 2014 ; Godwin and Barry, 2015 ). There are also con-

radicting results arising from structural connectivity measurements of

W configurations ( Weng et al., 2017 ; Tan et al., 2019 ). 

The brain is characterised by constantly changing dynamical in-

eractions (Supplementary movie; James (1890) ). Analogously to the

roposed importance of SW topology to dynamic information flow

 Watts and Strogatz, 1998 ; Bassett and Bullmore, 2017 ; Tan and

heong, 2017 ; Barahona et al., 2002 ; Takagi, 2018 ), different theories of

onsciousness converge in proposing that the dynamic richness of possi-

le brain states is a fundamental hallmark of consciousness ( Carhart-

arris et al., 2014 ; Northoff and Huang, 2017 ; Tononi et al., 2016 ;

ehaene and Christen, 2011 ). The study of dynamics in conscious-

ess research has in fact proven empirically successful ( Luppi et al.,

019 ; Barttfeld et al., 2015 ; Huang et al., 2020 ; Demertzi et al., 2019 ;

olkowski et al., 2019 ; Cavanna et al., 2018 ; Crone et al., 2020 ) and

here is some evidence of how disruption of small-world topology may

ccur in consciousness in particularly integrated states ( Luppi et al.,

019 ). Furthermore, there is evidence that the temporal variability of

he clustered-segregated component of SW topology is reduced in un-

onsciousness due to brain injury ( Crone et al., 2020 ). 

Although SW structure is universally recognised as important for

etwork dynamics ( Watts and Strogatz, 1998 ; Tan and Cheong, 2017 ;

arahona et al., 2002 ; Takagi, 2018 ), most studies of consciousness look-

ng into such network topologies have primarily focused on static net-

orks ( Schroter et al., 2012 ; Monti et al., 2013 ; Achard et al., 2012 ;

rone et al., 2014 ), networks clustered across time ( Luppi et al., 2019 )

r have not assessed unique predictive power of different measures in

ifferent subsystems and states of consciousness ( Crone et al., 2020 ). 

To tackle the inconsistencies between different empirical studies and

heory, and to probe the relevance of network science to consciousness,

e investigated the dynamics of small-worldness (SW). Given the dy-

amic nature of subjective phenomenology and the brain, and the bal-

nce between integration and segregation being proposed as essential to

nified experience ( Tononi and Edelman, 1998 ), we hypothesised that

he temporal complexity of small worldness would be a strong predictor

f levels of awareness. Such network dynamics may relate to a funda-

ental mechanism (integration and segregation) in producing the (dy-
2 
amically varying) stream of consciousness. Thus, we reduce the high

imensionality of connectivity data to properties that describe network

rchitecture in terms of integration and segregation. To investigate how

omplex ( “unpredictable ” or “uncompressible ”) network architectures

re over time, we use an information-theory measure adapted to bio-

ogical dynamical systems, namely sample entropy ( Delgado-Bonal and

arshak, 2019 ; Richman and Moorman, 2000 ). This metric, previ-

usly employed for fMRI data (e.g., Richman and Moorman, 2000 ;

midvarnia et al., 2021 ; Wang et al., 2014 ; Pedersen et al., 2017 ), has

een shown to be robust in noisy and short timeseries and specifically

onsiders temporal contiguous information (unlike previously employed

pproaches, Crone et al., 2020 ). Sample entropy has also been shown

o be correlated to other measures of complexity indicating that it is

obust and may successfully be used to measure underlying complexity

( Varley et al., 2020 ); see section 2.6 for more details). 

Given previous inconsistencies in this area, we devote particular

ttention to convergence of SW results by deploying different brain

arcellations (i.e., region definitions that form network nodes), mea-

ures and datasets. Parcellations, which varied between the afore-

entioned SW studies ( Schroter et al., 2012 ; Monti et al., 2013 ;

uppi et al., 2019 ), have been known to affect graph theory results

 Papo et al., 2016 ; Yao et al., 2015 ; Hallquist and Hillary, 2018 ;

uppi and Stamatakis, 2020 ). Therefore, the employment of different

arcellations to assess whether results are parcellation-dependent is ad-

ised ( Hallquist and Hillary, 2018 ). We used whole-brain parcellations

ith different granularities (i.e., Low and high granularity, 126 and

53 brain regions, respectively, described in Appendix A, and, respec-

ively, named WB126 and WB553) and the AAL (Automatic Anatom-

cal Labelling atlas), which has been extensively used in previous lit-

rature ( Schroter et al., 2012 ; Luppi et al., 2019 ; Weng et al., 2017 ;

an et al., 2019 ). To further assess convergence of results we chose to

mploy two different SW measures: Sigma ( 𝜎), as it is the most widely

eported measure in the literature ( Schroter et al., 2012 ; Monti et al.,

013 ; Luppi et al., 2019 ), and the more recently developed PHI ( 𝜑 ),

hich displays higher reliability in simulated networks and is designed

or biologically-relevant weighted connectivity ( Muldoon et al., 2016 ).

lease note this is not “PHI ” as defined in the context of integrated in-

ormation theory ( Tononi et al., 2016 ). 

The empirical data consists of three independent functional magnetic

esonance imaging (fMRI) datasets that are relevant to consciousness.

wo are propofol anaesthesia datasets; the first collected in Cambridge

referred to as “CAM ” dataset onwards), UK (18 participants) compris-

ng a control awake and a moderate sedation condition ( Adapa et al.,

014 ) and the second in London, Ontario (henceforth referred to as

ON) with 16 participants in control awake and deep sedation condi-

ions ( Naci et al., 2018 ). The third dataset was acquired from patients

ith disorders of consciousness (hereafter indicated by “DOC ”, Cam-

ridge, UK). This comprised 23 patients of whom 11 are in a Minimally

onscious State (MCS), and the other 12 diagnosed as Unresponsive

akefulness Syndrome (UWS). 

The use of these different datasets permits us to assess the impor-

ance of network dynamics in consciousness independently of the type

f consciousness alteration (i.e., pharmacologically or pathologically in-

uced). To this end, these conditions will be ordered according to de-

reasing levels of awareness (i.e., “content consciousness ” Laureys et al.,

007 ). We predict that the temporal complexity of SW, if relevant

o consciousness, will consistently diminish with decreasing levels of

wareness, in accordance to theoretical models ( Carhart-Harris et al.,

014 ; Tononi et al., 2016 ; Laureys et al., 2007 ). Besides analyses at

he whole-brain level, we will also investigate whether these effects are

ifferentially driven by different subsystems (cortex, subcortex, cere-

ellum), or the connectivity between them. We will also test whether

ny subsystem effects are exclusive to SW or can be extended to other

raph theory measures (namely modularity and participation coeffi-

ient) that, similarly to SW, quantify theoretically-relevant functional

egregation (functional division/specialisation) and integration (func-
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ional combination/information merging) from a network science per-

pective ( Rubinov and Sporns, 2010 ; Sporns and Zwi, 2004 ; Luppi et al.,

019 ; Achard et al., 2012 ). 

. Methods 

.1. Cambridge anaesthesia dataset (CAM) 

.1.1. Participants – CAM dataset 

Ethical approval was obtained from the Cambridgeshire 2 Regional

thics committee ( Adapa et al., 2014 ). 25 participants were recruited,

owever due to incomplete data in the cortex and procedure failure,

 subset of 18 were taken for further analyses. All participants were

ealthy and were native English speakers (50% males). Mean age was

3.3. ; ; ; Two senior anaesthetists were present during scanning. Electro-

ardiography and pulse oximetry were continuously performed whilst

easures of blood pressure, heart rate and oxygen saturation were

ecorded regularly. 

.1.2. Anaesthetic protocol – CAM dataset 

Propofol sedation was administered intravenously via “target con-

rolled infusion ” with a Plasma Concentration mode. An Alaris PK infu-

ion pump (Carefusion, Basingstoke, UK) was used which was controlled

ia the Marsh pharmacokinetic model. The anaesthesiologist can thus

ecide on a desired plasma 2 “target ” and the system will regulate the

nfusion rates using patient characteristics as covariates. Three target

lasma levels were used – no drug (awake control), 0.6 μg/ml (low se-

ation), 1.2 μg/ml (moderate sedation). In this study only the moder-

te sedation condition is used. Data for this latter condition was taken

0 min after cessation of sedation. Blood samples were taken at the end

f each titration period, before plasma target was altered. The level of

edation was probed verbally immediately before and after each of the

canning runs. 

10 min of plasma and effect-site propofol concentration equilibra-

ion was allowed before cognitive tests were commenced (auditory and

emantic decision tasks). Mean (standard deviation) plasma propofol

oncentrations was 304.8 (141.1) mg/ml during light sedation, 723.3

320.5) mg/ml during moderate sedation and 275.8 (75.42) mg/ml dur-

ng recovery. Mean (SD) total propofol given was 210.15 (33.16) mg. 

.1.3. Magnetic resonance imaging protocol – CAM dataset 

A Trio Tim 3 tesla MRI machine (Erlangen, Germany), with 12-

hannel head coil was used to obtain 32 descending interleaved oblique

xial slices with an interslice gap of 0.75 mmm and an in-plane reso-

ution of 3 mm. The field of view was 192 × 192, repetition time and

cquisition time was 2 s whilst the echo time (TE) was 30 ms and flip

ngle 78 degrees. T1-weighted structural images with 1 mm resolution

ere obtained using an MPRAGE sequence with TR = 2250 ms, TI =
00 ms, TE = 2.99 ms and flip angle = 9°. 150 timepoints were col-

ected for this dataset (an acquisition that lasted 5 min). 

.2. London Ontario propofol (LON) dataset 

.2.1. Participants - LON dataset 

The second anaesthesia dataset used was obtained at the Robarts

esearch Institute in London, Ontario (Canada) and was approved by the

estern University Ethics board. 19 healthy (13 males; 18–40 years),

ight-handed, English speakers with no reported neurological conditions

igned an informed-consent sheet and received pecuniary compensation

or their time. The study was approved by research ethics boards of

estern University (Ontario, Canada). Due to equipment malfunction

r impairments with the anaesthetic procedure three participants were

xcluded (1 male). Thus, 16 participants were included in this study

 Naci et al., 2018 ). 
3 
.2.2. Anaesthetic procedure - LON dataset 

The procedure was supervised by two anaesthesiologists and one

naesthetic nurse in the scanning room. Participants also performed an

uditory target-detection task and a memory verbal recall to assess level

f awareness independently from the anaesthesiologists. Additionally,

n infrared camera was used to further assess level of wakefulness. 

Propofol was administered intravenously using a Baxter AS50 (Sin-

apore); stepwise increments were applied via a computer-controlled

nfusion pump until all three assessors agreed that Ramsay level 5 was

eached (i.e. no responsiveness to visual or verbal incitements). If nec-

ssary, further manual adjustments were made to reach target con-

entrations of propofol which were predicted and maintained stable

y a pharmacokinetic simulation software (TIVA trainer). This soft-

are also measured blood concentration levels following the Marsh

-compartment model. The initial propofol concentration target was

.6 𝜇g/ml, and step-wise increments of 0.3 𝜇g/ml were applied after

hich Ramsay score was assessed. This procedure was repeated until

articipants stopped answering to verbally and where rousable only by

hysical stimulation at which point data collection would begin. Oxy-

en titration was put in place to ensure SpO2 above 96%. The mean es-

imated effect site propofol concentration was 2.48 (1.82–3.14) 𝜇g/ml

nd propofol concentration whilst the mean plasma concentration was

.68 (1.92–3.44). Mean total mass of propofol administered was 486.58

1.92–3.44). 8 min of RS-fMRI data was acquired. 

.2.3. Magnetic resonance imaging protocol – LON dataset 

A 3-tesla Siemens Trio scanner was used to acquire 256 func-

ional volumes (Echo-planar images [EPI]). Scanning parameters were:

lices = 33, 25% inter-slice gap resolution 3 mm isotropic; TR = 2000 ms;

E = 30 ms; flip-angle = 75°; matrix = 64 × 64. Order-of-acquisition was

ottom-up interleaved. The anatomical high-resolution T1 weighted im-

ges (32-channel coil, 1 mm isotropic voxels) were acquired using a 3D

PRAGE sequence with TA = 5 mins, TE = 4.25 ms, matrix = 240 × 256,

° FA. This dataset had broadly insufficient cerebellar cover in MRI im-

ges. Hence analyses specifically involving the cerebellum were not run

or this dataset. 

.3. Disorders of consciousness dataset (DOC) 

.3.1. Patients - DOC dataset 

MRI data for 23 DOC patients were collected between January 2010

nd July 2015 in the Wolfson Brain Imaging Centre in Addenbrookes

ambridge, UK (mean time post injury 15.75 For UWS and 16.9 for

CS). These were selected out of a bigger dataset ( n = 71) due to

heir relatively intact neuroanatomy. These patients were treated and

canned at the Wolfson Brain Imaging Centre, Addenbrookes Hospital

Cambridge, UK). Written informed consent was obtained from an indi-

idual that had legal responsibility on making decisions on the patient’s

ehalf. These participants were split into unresponsive wakefulness syn-

rome and minimally conscious state groups ( n = 12 for UWS and

 = 11 for MCS) in accordance to the diagnosis given by the attending

hysician at Addenbrookes Hospital. Mean CRS-r score was 8.3 (stan-

ard deviation 2.03). For the UWS group CRS-r score was 7, (1.41) and

.75 (1.54) for the MCS group. Mean age for the UWS group was 40.16

13.63); and for the MCS group 39.18 (18.13). In the UWS group the

etiology was described as TBI for 3 patients, one hypoxia, one oedema

nd the remaining participants having the pathology caused by anoxia.

n the MCS group nine of the patients had a traumatic brain injury, one

 cerebral bleed and one anoxia. In the MCS group 7 were male; whilst

n the UWS group 8 were male. This dataset received ethical approval

rom the National Research Ethics Service. 

.3.2. Magnetic resonance imaging protocol - DOC dataset 

A varying number of functional tasks, anatomical and diffusion MRI

mages were taken for the DOC participants. Only the resting-state data

as used for this study. This was acquired for 10 min (300 vol, TR = 2 s)
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sing a siemens TRIO 3T scanner. The functional images were acquired

sing an echo planar sequence. Parameters include: 3 × 3 × 3.75 mmm

esolution, TR/TE = 2000 ms/30 ms, 78° FA. Anatomical images T1-

eighted images were acquired using a repetition time of 2300 ms,

E = 2.47 ms, 150 slices with a cubic resolution of 1 mm. 

.4. Preprocessing 

All functional images were preprocessed in the same way

sing an in-house Matlab script that used SPM12 functions

 https://www.fil.ion.ucl.ac.uk/spm/software/spm12 ). After removing

he first 5 scans to reach scanner equilibrium, slice-timing correction

as performed (reference slice = no. 17, chosen as it corresponded

o the middle [axially] of the brain). Volumes were realigned to the

ean functional image. This process produced re-alignment param-

ters which were included in the time series extraction covariates

described in Section 2.4.1 ). Finally, using the mean functional image,

patial normalization to an EPI-template was conducted using the

unction “old norm ” in SPM as this yielded consistently good results

n comparison to other approaches when assessed visually (similarly

o a previous study Calhoun et al., 2017 ). Participant-specific cerebral

pinal fluid and white matter maps, used for the time series extraction

See Section 2.4.1 ), were also created using an in-house Matlab (2016a)

cript based on SPM functions. Visual inspection of normalization to

tandard space was carried for all datasets. Particular attention was

iven to the DOC dataset because of the effect that lesions may have on

patial transformations. Due to insufficient coverage of the cerebellum

n one UWS patient, they were excluded from analyses involving the

erebellum to avoid bias in results. 

.4.1. Time series extraction 

Denoising steps were performed in the Matlab and SPM-based

oftware CONN (17.f) ( https://web.conn-toolbox.org/ ). It is very im-

ortant to remove motion-induced artefacts in fMRI data, especially

n DOC data which may display inordinate amount of movement

 Weiler et al., 2021 ). We applied several methods to ensure move-

ent did not unduly influence the independent variables. Firstly, move-

ent parameters and their first temporal derivative were included as

 first-level covariate so as to remove movement-related noise. The

CompCorr algorithm regressed out CSF, white-matter and motion-

elated signals from the time-series (using the first 5 principal com-

onents; default setting in CONN). This method been shown to per-

orm well in removing movement, respiratory and cardiac artifacts

 Power et al., 2018 ), especially on DOC patients ( Weiler et al., 2021 )

nd has been previously used for this type of data ( Luppi et al., 2019 ;

rone et al., 2020 ). The ART quality-assurance/motion-artefact rejec-

ion toolbox ( https://www.nitrc.org/projects/artefact_detect ), as imple-

ented in CONN, was also used to further remove motion-related arti-

acts in the timeseries data. This method involves regressing out the

ffect of outlier scans (movement > 0.09 mm) in a first-level analy-

is which is suggested to further reduce focal effects of movement that

re not accounted for by the aCompCorr algorithm ( Power et al., 2018 ;

arkes et al., 2018 ). 

Linear de-trending and a commonly used 0.008–0.09 Hz band-pass

lter was applied (default in CONN and a widely adopted choice in

he literature on resting-state fMRI) to eliminate low-frequency scan-

er drifts and potential high-frequency noise. The time-series were ex-

racted controlling for the nuisance variables described above from the

nsmoothed functional volumes to avoid artificially-induced correla-

ions in clustered regions of interests. 

.5. . Graph theory analysis: graph construction 

Graph theory analyses were run on weighted thresholded undirected

onnectivity matrices (i.e., graphs). The regions of interest (ROI) cor-

esponded to “nodes ” and are placed on the rows and columns of a
4 
atrix; whilst the Pearson’s correlations (as is typically used in the

iterature) between any two pairs of nodes were considered weighted

functional connectivity; FC) edges and are represented by the cells in

he matrix ( Rubinov and Sporns, 2010 ; Luppi and Stamatakis, 2020 ).

elf-connections were set to 0 and NaN values were removed to ensure

raphs represented ROI-to-ROI connections. 

There is no consensus regarding how to threshold connectivity matri-

es ( Rubinov and Sporns, 2010 ; Monti et al., 2013 ; Crone et al., 2014 ).

sually a set of thresholds are used to ensure that results are consis-

ent and not driven by graph topologies at specific connection densi-

ies ( Rubinov and Sporns, 2010 ; Hallquist and Hillary, 2018 ; van den

euvel et al., 2017 ). Proportional thresholding was used (e.g., top 10%

f correlations). This ensures that the networks compared are of the

ame size, have similar properties such as node-connectivity distribu-

ion, and that the density of each network was calculated relative to

ts size ( Rubinov and Sporns, 2010 ; Hallquist and Hillary, 2018 ). There

ave been critiques ( Hallquist and Hillary, 2018 ; van den Heuvel et al.,

017 ) to the use of proportional thresholding in clinical populations as

aseline functional connectivity may be different compared to controls

nd would introduce spurious effects in the network analysis. It is pos-

ible, that graph theory differences are actually driven by simple FC dif-

erences. To obviate this problem, other than controlling for dynamic FC

ntropy at the inferential statistic level, weighted networks were used

s lower correlations would have lower influence on the calculation of

TA metrics and are reported to ameliorate FC-driven GTA differences

 van den Heuvel et al., 2017 ). 

To further guard from the problem of the FC-driven GTA differ-

nces, a particularly stringent proportional threshold was used to define

raphs. 5 thresholds going from 5% to 25% in 5% incremental steps were

sed to test a wide-range of connection densities and ensure results are

ot driven by any particular arbitrarily-chosen threshold ( Rubinov and

porns, 2010 ; Monti et al., 2013 ; Godwin and Barry, 2015 ; Luppi and

tamatakis, 2020 ). Given the lack of knowledge as to the most appro-

riate range of thresholds for graph theory analyses, we took this range

rom previous studies ( Monti et al., 2013 ; Godwin and Barry, 2015 ). Of

ote is that a previous study investigating the sample entropy of graph

heory dynamics showed results to be stable across similarly defined

hresholds ( Pedersen et al., 2017 ). Additionally, we calculated threshold

pecific results for dynamic small world complexity and its underlying

easures (clustering coefficient and path length) and similarly found

he results to be stable across these thresholds (appendix B). 

This procedure led to 5 functional connectivity matrices for each

ubject in each timepoint. On each of these connectivity matrices graph

heory metrics were calculated, thus reducing the multidimensional

raph into a single value describing its topology. Sample entropy

described below, Section 2.6 ) was calculated on the timeseries of each

f these threshold-specific graph theory measures and then averaged to

orm the independent variables in inferential analyses. The averaging

cross threshold-specific sample entropy values will reduce the influ-

nce of any single threshold on the results. Only positive correlations

ere considered as is typical for network neuroscience due to the

ubious interpretation and the preprocessing contingencies associated

ith negative weights ( Rubinov and Sporns, 2010 ; Huang et al., 2020 ;

ixon et al., 2017 ). 

These weighted-thresholded matrices were analysed using in-house

atlab scripts which utilised functions from the brain connectivity

oolbox ( Rubinov and Sporns, 2010 ). In accordance to previous ad-

ice ( Hallquist and Hillary, 2018 ), given how GTA results may be

riven by specific parcellations ( Papo et al., 2016 ; Yao et al., 2015 ;

allquist and Hillary, 2018 ), the reproducibility of GTA results was

ested through the use of several network definitions (namely WB126,

B553 and the AAL, see appendix A). In evaluating the generalisability

f cortical parcellations, a study from our group showed a parcellation

ith about 200 regions may be the most representative ( Luppi and

tamatakis, 2020 ). Here we followed a different strategy, showing that

ur results are robust even to substantial changes in parcellation scale

https://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://web.conn-toolbox.org/
https://www.nitrc.org/projects/artefact_detect
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Fig. 1. Illustration of method. A) We obtained timeseries for each brain region. B) The timeseries were divided with a sliding window approach (each window 

comprising of 24 timepoints and slid by 1 timepoint). C) We then correlated all region timeseries to obtain a weighted graph for each window. D) We calculated SW 

( Humphries and Gurney, 2008a; Muldoon et al., 2016; Watts and Strogatz, 1998 ) for each graph so as to obtain a timeseries of SW values on which E) we calculated 

sample entropy. F) We inserted the sample entropy of dynamic small worldness into an ordinal logistic regression as a predictor; with the ordered conditions 

(according to presumed level of awareness) as a dependant variable. 
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100 and 400). In fact, these parcellations were chosen due to their

ifference in granularity. 

To evaluate the network properties of between subsystem graphs

i.e., cortex-cerebellum, cortex-subcortex and subcortex-cerebellum, re-

ults in Section 3.5 ) we set to zero the irrelevant functional connectivity

alues in the graph. This procedure was necessary given that uniquely

xtracting the between network connectivity would have led to non-

ymmetrical graphs which is not feasible for graph theory analyses. To

hreshold the graphs, we ordered the functional connectivity values and

ound the value corresponding to the relevant percentile (used in pro-

ortional thresholding; e.g., 5%) of non-zero values. We then inserted

his value into the absolute_thresholding.m function of the brain connec-

ivity toolbox ( Rubinov and Sporns, 2010 ). This ensured that the values

hich were not relevant to the specific between subsystem graph did not

nfluence the procedure of obtaining sparse networks. We did not run

he between subsystem analyses on the LON dataset due to insufficient

overage of the cerebellum. 

For the creation of time-varying (dynamic) connectivity matrices, a

liding-window approach was used. In accordance with previous studies

 Luppi et al., 2019 ; Preti et al., 2017 ), the timeseries were split into

 window composed of 24 timepoints (48 s) ( Fig. 1 ) which was then

oved by one timepoint. Previous studies have suggested that sliding

indows between 30 and 60 s capture dynamic functional connectivity

uctuations in a robust manner ( Preti et al., 2017 ). The window sliding

i.e., step) of one timepoint was chosen as it maximised the length of

he timeseries of graph theory properties. The timeseries were tempered

ith a Gaussian window to ensure that the timepoints at the edge of

he windows did not have a great effect on the correlations obtained

ollowing suggestions from previous studies ( Preti et al., 2017 ). 

This procedure resulted in 122 graphs for each participant in the

AM dataset, 271 graphs for the DOC dataset and 251 for the LON
 t  

5 
ataset. The measure used (sample entropy) upon the properties of these

raphs (See Section 2.6 ; Richman and Moorman, 2000 ) is stable across

iffering numbers of time points. 

For the sample entropy of functional connectivity (dFC-E), the mean

f the positive values for each unthresholded temporally-specific FC ma-

rix was calculated giving a timeseries of FC values on which sample

ntropy was calculated. Positive values were chosen for the calculation

f dFC-E because the graph theory metrics employed in this study used

ositive edges exclusively ( Rubinov and Sporns, 2011 ) and because pro-

ortional thresholding, despite retaining the same number of edges, may

etain significantly different positive average connectivity values across

linical conditions and individuals, which may in turn influence graph

heory results ( Hallquist and Hillary, 2018 ; van den Heuvel et al., 2017 ).

.5.1. Graph theory properties: definitions 

Small-worldness attempts to quantify a particular topology of self-

rganising complex systems ( Watts and Strogatz, 1998 ). This particular

rchitecture is defined by a high clustering-coefficient and a small char-

cteristic path length. 

Clustering-coefficient is defined as the fraction of neighbours of a

ode that are also neighbours ( Rubinov and Sporns, 2010 ; Watts and

trogatz, 1998 ; Humphries and Gurney, 2008 ; Muldoon et al., 2016 ;

elesford et al., 2011 ) effectively operationalized as: 

𝑖 = 

2 𝑡𝑖 
𝑘𝑖 ( 𝑘𝑖 − 1 ) 

(1)

Where t, the number of connected triangles of node i, is com-

ared to the number of connections (k) of that node. The clustering

oefficient is averaged across nodes to the typical “cliquishness ” of

 network ( Watts and Strogatz, 1998 ; Humphries and Gurney, 2008 ;

uldoon et al., 2016 ; Telesford et al., 2011 ). The function clus-

ering_coef_wu.m from the brain connectivity toolbox ( Rubinov and
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𝑆  
porns, 2010 ) was used to calculate this. This clustering algorithm can-

ot be used in between subsystem graphs (e.g., cortex-subcortex) as

here is an impossibility to form triangles when between system edges

re considered exclusively (e.g., cortical node A is connected to subcor-

ical node A; cortical node A is connected to subcortical node B; subcor-

ical node B and A cannot be connected as there are no within subsystem

dges). 

Characteristic path-length is calculated as the average of the short-

st distance between all pairs of nodes ( Watts and Strogatz, 1998 ) using

ijkstra’s algorithm and is denoted as L. Small values of L indicate that

nformation is readily available (easily transmissible) across the network

 Rubinov and Sporns, 2010 ; Telesford et al., 2011 ). The charpath func-

ion from the brain connectivity toolbox was used to calculate this. 

It is common practice to normalise L and C to equivalent (i.e. with

omparable network properties) Erdos-Renyi random networks ( Crand &

rand; Humphries and Gurney, 2008 ; Schroter et al., 2012 ; Monti et al.,

013 ). This ensures that the clustering coefficient and path-length rather

han other network properties influence SW, and thus somewhat oper-

tionalises the original SW definition (i.e., C >> Crand & L ≥ Lrand

atts and Strogatz, 1998 ; Humphries and Gurney, 2008 ). The randomi-

ation parameters and the number of random networks created were

ssessed in terms of convergence of values (i.e., recalculating with in-

reasing values until results were consistently similar). Each Crand and

rand were calculated from 50 random networks from a rewiring param-

ter of 5 (in the ranmio_und.m function in brain connectivity toolbox). 

The ratio between these random-network normalized values of these

ives small-worldness: 

= 

𝛾

𝜆
= 

𝐶 

𝐶𝑟𝑎𝑛𝑑 

𝐿 

𝐿𝑟𝑎𝑛𝑑 

(2)

Thus, the shorter the normalised path-length ( 𝜆) and the higher the

ormalised clustering coefficient ( 𝛾), the higher SW- 𝜎. Sigma could not

e run on the higher granularity parcellation due to extreme computa-

ional requirements. 

However, despite being extensively used in the literature ( Lord et al.,

017 ; Schroter et al., 2012 ; Monti et al., 2013 ; Luppi et al., 2019 ),

his metric has been criticized as 𝜎 is highly dependant on small vari-

tions of clustering-coefficient in the random network and is a mea-

ure that is primarily driven by clustering coefficient ( Papo et al., 2016 ;

elesford et al., 2011 ). It is argued that Crand is an inappropriate nor-

alisation model as high clustering is found in lattice networks and

n fact in the original definition compares the clustering coefficient of a

W network to that of a lattice network and the path length to a random

raph ( Watts and Strogatz, 1998 ). Therefore, Telesford et al. (2011) sug-

est normalising C to the clustering coefficient of an equivalent lattice

etwork (Clatt). 

In fact, for this study the alternative function to calculate

mall world topology was taken from Muldoon and colleagues

 Muldoon et al., 2016 ), which similarly to Telesford and colleague’s

easure ( Telesford et al., 2011 ), uses both lattice and random networks

o normalise C and L. However, they employ a more complete normal-

sation method which is more faithful to the original definition of SW

 Watts and Strogatz, 1998 ) than sigma and more suitable for the analysis

f weighted connectivity matrices (See appendix C and Section 3.3 for

ore information). 

𝐶 = 

𝐶 𝑙𝑎𝑡𝑡 − 𝐶 𝑜𝑏𝑠 
𝐶 𝑙𝑎𝑡𝑡 − 𝐶 𝑟𝑎𝑛𝑑 

Δ𝐿 = 

𝐿𝑜𝑏𝑠 − 𝐿𝑟𝑎𝑛𝑑 
𝐿𝑙𝑎𝑡𝑡 − 𝐿𝑟𝑎𝑛𝑑 

(3) 

Where L and C indicate path length and clustering coefficient, re-

pectively, of the observed network (obs), an equivalent lattice network

latt), and a random network (rand). These normalisations in turn give

he SW measure which ranges from 0 to 1 (the algorithm forces values

o 1 in the cases they are above this value): 

= 1 − 

√ 

Δ𝐶 

2 + Δ𝐿 

2 

2 
(4)
6 
For further conceptual and statistical evaluation of the two small-

orld measures used in this study see appendix C. 

The modularity algorithm ( Rubinov and Sporns, 2010 ; function mod-

larity_und.m, from the brain connectivity toolbox) works by detecting

he (computationally) optimal community structure by dividing the net-

ork into groups of nodes with maximised within-group connections

nd minimised between-group connection. Here we used the weighted

ersion of modularity to conserve relevant FC strength information

 Rubinov and Sporns, 2010 ). 

 

𝑤 = 

1 
𝑙𝑤 

∑
𝑖,𝑗∈𝑁 

[ 

𝑊 𝑖𝑗 − 

𝐾 

𝑤 
𝑗 
𝐾 

𝑤 
𝑖 

𝑙 𝑤 

] 

𝛿𝑚 𝑖 , 𝑚 𝑗 
(5) 

Where l is the number of links, i and j represent nodes, W the weights,

nd K the degree and the 𝛿𝑚 𝑖 , 𝑚 𝑗 parameter is 1 if the nodes i and j are

n the same module and 0 otherwise. 

The participation coefficient is a measure of the richness of inter-

odular connectivity of all nodes, and requires modularity to have

een calculated already ( Rubinov and Sporns, 2010 ). The participa-

ion_coef.m function was used in this study ( Rubinov and Sporns, 2010 ).

 

𝑤 
𝑖 
= 1 − 

∑
𝑚 ∈𝑀 

( 

𝑘 𝑤 
𝑖 
( 𝑚 ) 

𝑘 𝑤 
𝑖 

) 2 

(6)

Where M is the set of modules, 𝑘 𝑤 
𝑖 

(m) is number of weighted links

etween i and all nodes in module m. 

All metrics were calculated across the 5 thresholded networks for

ach timepoint. All graph theory measures, excepting the SW propensity

 Muldoon et al., 2016 ), were calculated using the brain connectivity

oolbox ( Rubinov and Sporns, 2010 ). 

.6. Sample entropy 

In dynamical systems, entropy is a measure of the rate of informa-

ion produced. Sample entropy was developed specifically to obviate the

roblem of having short and noisy timeseries which is typical of biolog-

cal datasets ( Delgado-Bonal and Marshak, 2019 ; Richman and Moor-

an, 2000 ), and therefore makes it particularly suitable to fMRI derived

imeseries analysis ( Luppi et al., 2019 ; Wang et al., 2014 ). It additionally

onsiders sequential information in the timeseries rather than the dis-

ribution (e.g., Shannon entropy or standard deviation Waschke et al.,

021 ) making it appropriate for analysis of the complexity of a dy-

amical system ( Richman and Moorman, 2000 ). This measure has been

hown to relate to other measures of complexity ( Varley et al., 2020 )

ndicating it is adept to detecting underling complexity. Furthermore, it

as been shown to correlate with fluid intelligence and in-scanner be-

aviour, to be reproducible across different fMRI sessions and to main-

ain robustness across different parameters ( Omidvarnia et al., 2021 ;

ang et al., 2014 ; Pedersen et al., 2017 ; Zhang et al., 2020 ). For

hese reasons we have selected it as the complexity measure of net-

ork property timeseries. Sample entropy is an improvement on approx-

mate entropy, which in turn is based upon Kolomogorov complexity

 Mitchell, 2011 ; Kolmogorov, 1965 ). The underlying notion being that

 complex system cannot be easily described, whilst a simple system can

e quickly or briefly summarized. 

Sample entropy takes two timeseries segments of different lengths

nd compares how well each of these segments explains the rest of the

imeseries (via the Chebyshev distance measure, chosen as it was the de-

ault in the code obtained from the original creators Richman and Moor-

an (2000) ). Sample entropy is a ratio between how well the smaller

egment explains the data compared to the larger segment, and thus

igher values indicating decreased self-similarity and increased com-

lexity. 

𝑎𝑚𝑝𝐸𝑛 = − 𝑙𝑜𝑔 
𝐴 

𝐵 

(7)
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Where A is how similar the smaller timeseries segment (via Cheby-

hev distance) to the rest the timeseries. B is how similar the bigger

imeseries segment relates to the rest of the timeseries. 

The sequence lengths or timeseries lengths (max = 2, min = 1) were

aken from a study which has looked at sample entropy of graph theory

roperties in functional MRI ( Pedersen et al., 2017 ). Whilst the authors

eport that these parameters can produce replicable results across in-

ependent datasets, there is still no consensus as to how to select op-

imal parameters. Also taken from this study is the tolerance for ac-

epting matches of similarity which was set to 0.2 times the standard

eviation. This permits the comparison of signals with different ampli-

udes ( Richman and Moorman (2000) , appendix C) and such a scaling

f this threshold by the standard deviation of the signal is also used

y the original creators of the sample entropy algorithm ( Richman and

oorman, 2000 ). The algorithm used in this study was used in a pre-

ious study with the original creators of the sample entropy algorithm

 Lake et al., 2002 ). 

.7. Inferential analyses: ordinal logistic regression 

To assess the hypothesis that the dynamical complexity of graph

heory properties diminished with decreasing levels of awareness or-

inal logistic regressions were performed using the polr function of

he MASS R toolbox. This is a regression model for ordinal categori-

al dependant variables whilst the independent variable is continuous.

his is derived from the logistic regression and is ideally suited to this

tudy given the hypothesis (monotonic decrease of complexity across

evels of awareness) and the little assumptions underlying it. Nonethe-

ess, multicollinearity was assessed when multiple predictor variables

ere included and the proportional odds assumption was tested using

rants test (using package ‘brant’). The proportional odds assumption

ntails the model coefficients have a proportional effect on each group;

.e., “the slope ” estimated between each condition (outcome variable) is

he same or proportional. All tests were one-sided given the direction-

pecific hypotheses. To estimate interpretable odds ratio effects sizes,

e ordered the conditions from lowest level of awareness to the high-

st (UWS > MCS > SED > CON). The reason for this was it produced much

ore interpretable odds ratios (i.e., greater than 1 rather than tending

o 0). Odds ratios can be obtained from the regression coefficient in-

ependent of ordering via exp(abs(X)), applicable in matlab, r, excel,

ython etc. 

. Results 

In order to confirm that the dynamics of network SW architecture can

redict altered levels of awareness, we divided whole brain resting-state

MRI data spatially into different parcellations ( Fig. 1 A) and then split

he resulting timeseries using a sliding window approach ( Luppi et al.,

019 ; Barttfeld et al., 2015 ; Preti et al., 2017 ) ( Fig. 1 B). Within each

f these windows we constructed a network by relating each brain re-

ion’s timeseries to all others, using Pearson’s correlation coefficients

 Fig. 1 C). Two small world measures ( PHI ( Muldoon et al., 2016 ); and

igma ( Humphries and Gurney, 2008 ), Fig. 1 D) were calculated on each

f these networks to initially assess the reliability of this approach. In

his manner, we obtained a time-series of SW values on which sample en-

ropy was calculated ( Richman and Moorman, 2000 ) ( Fig. 1 E), thus ob-

aining one value for each subject that denotes the richness, or complex-

ty, of their SW fluctuations. Inferential statistics were performed using

rdinal logistic regressions, with sample entropy values as the predictor

ariable and ordered conditions as the predicted variable ( Fig. 1 F). 

To assess whether dynamic SW complexity scales with conscious-

ess, we ordered the conditions a-priori according to presumed levels of

wareness, analogously to previous studies looking at the functional net-

ork properties of consciousness ( Di Perri et al., 2016 ; Demertzi et al.,

019 ). For the main analysis the CAM awake condition was ordered (as

 factor in R) before the CAM moderate sedation, which in turn was
7 
laced as more aware than the DOC minimally conscious state (MCS)

nd DOC unresponsive wakefulness syndrome (UWS), respectively. To

ssess the robustness of our results, we performed a second analysis by

ubstituting the CAM propofol dataset with the LON propofol dataset

hich comprised an awake and a deep sedation condition (ordered, re-

pectively, Fig. 1 F). 

.1. SW dynamic complexity in the brain 

Our hypothesis that dynamic SW sample entropy (dSW-E) predicts

onotonically decreasing levels of awareness was confirmed using an

rdinal logistic regression for both SW measures ( Fig. 2: PHI Odds ra-

ios [OR] = 4.14 p = 0.000006; C.I. [confidence intervals of odds ratios

.5%:97.5%] 2.48: 7.77; Sigma OR: 2.48 p = 0.0002 C.I. 1.48:4.17).

his result was corroborated across different parcellations with differ-

nt granularities (presented in appendix D). Furthermore, this result was

eplicated in the second analysis with a different sedation dataset (i.e.,

ON-DOC datasets = PHI; OR = 2.27 p = 0.001 C.I. 1.30:3.93 and Sigma;

R = 2.25 p = 0.001, C.I. 1.34:3.74; S2, Fig. 2 ). This suggests that the un-

redictability of dynamic SW architecture reliably scales with increasing

evels of awareness. 

This consistency is remarkable given that when we calculated

he two SW measures (PHI and Sigma) on static graphs (i.e. one

raph per participant constructed by averaging across all timepoints

 Schroter et al., 2012 ; Monti et al., 2013 )), they were not correlated

Rho = 0.17, p = 0.2) and did not yield consistent patterns between

onditions and network definitions (see appendix C). Conversely, the

wo measures of SW when calculated dynamically, proved more infor-

ative and showed the same intuitive patterns of decreasing complexity

n lower levels of awareness ( Fig. 2 ). 

It is important to assess whether these graph theory entropy met-

ics truly reflect the temporal complexity of the functional architecture

i.e., topology), or can be explained more parsimoniously by lower or-

er metrics such as the dynamic variation in functional connectivity (FC)

 van den Heuvel et al., 2017 ). In fact, the entropy of average positive

ynamic FC (chosen as graph theory properties were here calculated

n positive correlations ( Rubinov and Sporns, 2010 ; van den Heuvel

t al., 2017 )) was a significant predictor for levels of awareness across

arcellations and datasets (e.g., lower granularity whole brain parcel-

ation for CAM-DOC analysis: OR = 1.63, C.I. = 1.02:2.59, p = 0.01,

ee appendix E for all results). Such results suggest that awareness en-

ails an unpredictability of dynamic global synchronisation levels (mea-

ured by brain region timeseries Pearson’s correlations). This begs the

uestion whether dynamic SW entropy (dSW-E, Fig. 2 ) truly reflects the

onsciousness-predictive complexity of functional topology, or whether

W entropy results may be better explained by the unpredictability of

lobal synchronisation. 

To investigate this question, we ran a control ordinal logistic regres-

ion analysis that involved the same exact procedure used above ( Fig. 1 f)

ith the addition of the sample entropy of dynamic FC (dFC-E) as a co-

ariate predictor. Both SW entropy predictors remained significant in

he main analysis ( Table 1 and appendix E). However, in the analysis

ontrolling for dFC-E in the LON-DOC dataset, the dSW-E of Sigma for

he AAL parcellation lost significance ( Table 1 ), whilst dSW-E results

emained significant in all other parcellations despite controlling for

FC-E. Of interest is that PHI showed higher effect sizes than sigma sug-

esting it to be more sensitive to relevant variation (( Papo et al., 2016 ),

ection 2.5.1 , appendix D and F). Of note is also that the complexity

f dynamic functional connectivity (dFC-E) tended to display stronger

ffects when inserted as a covariate with the Sigma measure rather than

hen inserted with PHI ( Table 1 ). 

This control analysis included both dFC-E and dSW-E as co-variate

redictors in the same ordinal logistic regression and found the lat-

er remained significant. This suggests that the temporal complexity

f SW architecture predicts increasing levels of awareness above and

eyond what can be explained by the complexity ( “compressibility ”)
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Fig. 2. Dynamic SW properties and ordinal logistic regres- 

sion results. In the top panel (A) are shown example dynamic 

SW properties (3 timepoints) overlaid on a brain template 

(Brainmesh_Ch2withCerebellum; BrainNet viewer Xia et al., 

2013 ). The size of the nodes represents the clustering coef- 

ficient of that node, whilst the connections represent the in- 

verse of the path length between the two nodes. The hotter 

the colour, the shorter the path length (i.e., how easily in- 

formation can be transmitted between the nodes, not direct 

connectivity). Shown, for illustrative purposes, (top-left) is 

an example of a control awake participant (CAM dataset) 

and an example of an unresponsive wakefulness syndrome 

patient (DOC dataset; bottom-left). Noticeable is the change 

in node size (clustering coefficient) and edge colour (path 

length) over time in the control participant, which is not so 

prominent in the individual affected by UWS. In the bottom 

panel (B) violin plots are showing the scaling of dynamic SW 

sample entropy with levels of awareness for both the main 

and second analysis. Conditions are ordered (left to right) ac- 

cording to a-priori presumed level of awareness (i.e., Awake 

> Propofol Sedation > MCS > UWS). The first two rows 

represent the dynamic PHI and Sigma entropy for a whole 

brain parcellation with 126 regions (appendix A), respec- 

tively. The third row represents dynamic PHI entropy val- 

ues for the AAL. Blue triangle represents the median, whilst 

the red diamond represents the mean. OLR = ordinal logis- 

tic regression coefficients; UWS = unresponsive wakefulness 

syndrome; MCS = minimally conscious state; SED = propo- 

fol sedation; CON = control awake condition. All ordinal 

logistic regression values are standardized for comparison. 
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f dynamic functional connectivity. This may be taken as a strong in-

ication that the dynamic information produced (measured via sam-

le entropy ( Richman and Moorman, 2000 )) by functional topolog-

cal temporal organisation will decrease with diminishing levels of
wareness. t  

8 
.2. Dynamic complexity in the brain of the components of small 

orldness: clustering and path length 

To further elucidate these results ( Fig. 2 ), we investigated whether

he dSW-E effect could be explained by the complexity of the dynamics
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Table 1 

Odds ratios and p-values for dSW-E and dFC-E when inserted into the same ordinal logistic re- 

gression as covariates. Results for all whole-brain parcellations and the CAM-DOC and LON-DOC 

analyses. 

Parcellation SW measure dSW-E dFC-E 

Odds ratios P-value Odds ratios P-value 

CAM-DOC 

Analysis 

WB126 𝚽 4.52 0.00001 1.15 0.30 

𝝈 2.53 0.0002 1.61 0.019 

AAL 𝚽 3.85 0.00001 0.21 0.22 

𝝈 2.16 0.00150 1.23 0.070 

WB553 𝚽 3.22 0.0002 1.09 0.37 

LON-DOC 

Analysis 

WB126 𝚽 1.80 0.04 1.42 0.12 

𝝈 1.89 0.01 1.55 0.049 

AAL 𝚽 2.15 0.01 1.12 0.36 

𝝈 1.32 0.13 1.68 0.021 

WB553 𝚽 1.92 0.02 1.36 0.16 

Table 2 

CAM-DOC analysis of different whole brain parcellations. The dynamical complexity of clustering coefficient (dCC-E) and 

path length (dPL-E), controlled for the dynamical complexity of functional connectivity (dFC-E). 

Parcellation SW component Clustering Coefficient (CC) and Path Length (PL) dynamic complexity dFC-E 

Odds ratio P-value Odds ratio P-value 

WB126 dCC-E 4.28 0.000114 0.66 0.119 

dPL-E 3.99 0.000038 0.79 0.211 

AAL dCC-E 10.78 0.000002 0.37 0.003 

dPL-E 5.12 0.000004 0.59 0.045 

WB553 dCC-E 4.32 0.003864 0.51 0.093 

dPL-E 3.69 0.000146 0.80 0.247 
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f the clustering or path length that compose small worldness. We

ound that both of these components of SW were predictive of levels

f awareness despite controlling for the complexity of the underlying

C dynamics (see Table 2 ). In the CAM-DOC dataset and the lower

ranularity parcellation the odds ratio was 4.28 (C.I. = 2.06:9.80,

 = 0.0001) for the clustering coefficient dynamics (dCC-E) and for

he functional connectivity dynamics (dFC-E) the odds ratio was 0.66

C.I. = 0.31:1.28, p = 0.12). For the path length dynamics (dPL-E),

he odds ratio was 3.99 (C.I. = 2.06:8.18, p < 0.0001), whilst the odds

atio for dFC-E was 0.79 (C.I. = 0.44:1.41, p = 0.21), when inserted

s a covariate in the same model. These results reproduced across

ifferent measure implementations (normalised [Muldoon et al., 2016]

r non-normalised) and different parcellations (appendix G). Similar

esults were found for the LON-DOC dataset with the exception of the

ormalised path length in the lower granularity parcellation and, in

he higher granularity parcellation, the clustering coefficient measures

nd non-normalised path length (see appendix G for full results). This

ndeed suggests that the dynamics of the integration (path length)

nd segregation (clustering coefficient) components underlying SW are

ndividually predictive of levels of awareness. 

.3. Dynamic small-world entropy in the cortex, subcortex and cerebellum 

Given that dynamic entropy of both SW measures ( 𝜑 & 𝜎) consis-

ently predicted levels of awareness at the whole-brain level, we sought

o explore whether the dSW-E of major cytoarchitectonically distinct

ubdivisions of the brain (i.e., cortex, subcortex and cerebellum) are rel-

vant to consciousness and differentially explain the above whole-brain

ffects found in both high and low granularity parcellations. 

This analysis is relevant to debates in the literature in which, some

ostulate the importance of the cortex in consciousness ( Tononi et al.,

016 ; Ledoux and Brown, 2017 ); whilst others posit an essential role

or the subcortex ( Carhart-Harris and Friston, 2019 ; Panksepp, 2011 ;

olms, 2013 ). 

Given the instability of SW measures when calculated on time-

veraged networks, as shown by the inconsistences between previously

ublished results (e.g., 29,31) and in the present study (appendix C), we
9 
hought it paramount to assess the convergence of results between differ-

nt SW implementations (Sigma and PHI). Given the strong convergence

f results across control analyses (varying parcellation type, granular-

ty, dataset and SW measures; Table 1 ; Fig. 2 ), we continued with one

easure. Although Sigma is widely used in the published literature, it

s computationally expensive when run on time-varying networks and

t is based on a normalisation method that is not completely faithful

o the original definition ( Watts and Strogatz, 1998 ). It normalises the

etwork’s clustering coefficient to a random network, whilst the origi-

al definition states that small world “systems can be highly clustered,

ike regular lattices, yet have small characteristic path lengths, like ran-

om graphs ” ( Watts and Strogatz, 1998 , p.440). The PHI measure on the

ther hand assesses clustering and path length as divergence from lat-

ice and random networks, respectively ( Muldoon et al., 2016 , appendix

, 2.5.1). PHI’s normalisation method was also specifically designed to

e used with weighted networks, thus being more adept at preserving

iologically relevant information and controlling for the underlying FC

ffects (as shown by the difference in dFC-E effects when PHI and Sigma

re inserted as covariates in the same analyses; Table 1 ). Furthermore,

HI seemed to produce higher effect sizes across measures in predicting

evels of awareness ( Section 3.1 , Table 1 ) and is computationally much

ore viable. For these reasons we continued analyses with the PHI mea-

ures only, having ascertained the convergence of alternative definitions

f small-world networks when calculated dynamically. 

The complexity of dynamic SW topology had unique predic-

ive power for levels of awareness in the cortical (OR = 3.67

 = 0.000006 C.I. = 2.03:6.62) and subcortical (OR = 6.96 p = 0.000003

.I. = 3.00:14.88) network definitions. The cerebellar parcellation dis-

lays a significant trend ( Fig. 3 ; OR = 1.68, p = 0.02, C.I. = 1.01:2.88;

ppendix I). 

Remarkably, the effect sizes for the subcortex were greater than those

f the cortex when inserted in the same ordinal logistic regression as co-

ariates (appendix I), whilst the cerebellum also displayed unique pre-

ictive power. The LON-DOC datasets showed convergent results with

he exception of the high granularity cortical parcellation (400 nodes;

 = 0.08, appendix H). Furthermore, when we added dFC-E as a co-

ariate to dSW-E, both the cortex and subcortex remained significant,
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Fig. 3. Subsystem dynamic SW properties and ordinal logistic regression results. In the left panel (A) are shown example dynamic SW properties (3 timepoints) for 

the cortex, subcortex and cerebellum (templates: BrainMesh_Ch2withCerebellum; BrainMesh_ICBM152_smoothed; BrainMesh Cerebellum, respectively, created in 

BrainNet viewer Xia et al., 2013 ). Node size represents the clustering coefficient of that node, whilst the connections represent the inverse of the path length between 

the two nodes. The hotter the colour, the shorter the path length. Shown are three timepoints for the cortex (red nodes; no = 100), subcortex (blue nodes; no = 54) 

and the cerebellum (green nodes; no = 99), for an awake participant (CAM dataset). In the right panel (B) violin plots are showing the scaling of dynamic PHI sample 

entropy with levels of awareness. Blue triangle represents the median, whilst the red diamond represents the mean. Conditions are ordered (left to right) according 

to a-priori presumed levels of awareness (i.e., Awake > Propofol Sedation > MCS > UWS). The first row shows the cortical, the second the subcortical and the last 

the cerebellar results. OLR = ordinal logistic regression coefficients; UWS = unresponsive wakefulness syndrome; MCS = minimally conscious state; SED = propofol 

sedation; CON = control awake condition. All ordinal logistic regression values are standardized for comparison. 
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hilst the cerebellum dSW-E was not significant ( p = 0.055; Appendix

). When controlling for dFC-E, the sSubcortex dSW-E again had higher

dds ratios (OR = 6.23) than the cortex (OR = 3.49) in both datasets,

lthough the cortex violated regression assumptions in the CAM-DOC

nalysis (Appendix J). 

A similar pattern was observed in the LON-DOC dataset (appendix

). These results suggest that the complexity of subcortical dynamic

W topology may be more consistently sensitive to decreasing levels

f awareness than the cortex. 

We then investigated whether these measures were correlated to

ehavioural metrics (bedside diagnostic assessments of consciousness-

mpairment in DOC patients via the Coma Recovery Scale-revised [CRS-r

 Giacino et al., 2004 )]; and pharmacological plasma propofol concentra-

ion metrics (in CAM dataset). This would elucidate the potential rele-

ance of dSW-E to clinically-relevant observable behaviour (in the case

f CRS-r) and the amount of propofol found in the blood. We found

hat subcortex dSW-E was inversely correlated to Propofol plasma con-

entration in the CAM dataset (rho = − 0.38, p = 0.022). However,
10 
his correlation did not survive Bonferroni correction for the differ-

nt parcellations and measures used. Propofol plasma concentration is

nown to correlate with individual differences in consciousness recovery

ime and the underlying genetic variation relevant to pharmacokinetics

 Kansaku et al., 2011 ). The relationship between subcortical network

ynamics and propofol concentration may relate to individual differ-

nces in pharmacodynamic effect on the brain and therefore differences

n levels of awareness. There was also a correlation between SW en-

ropy of PHI of the cortex and CRS-r (rho = 0.56, p = 0.004), but this

id not replicate in the higher granularity parcellation. Although this

ehavioural measure is considered the most comprehensive instrument

o detect consciousness at the bedside ( Giacino et al., 2004 ; Edlow et al.,

021 ) it should be noted that behavioural responsiveness is not a perfect

orrelate of consciousness (e.g., Owen et al., 2008 ) and may vary sub-

tantially within patients ( Wannez et al., 2017 ). Thus, such a correlation

ay indicate that cortical dynamic complexity is related to conscious-

ess, but not unequivocally so. 
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Table 3 

Main analyses (CAM-DOC datasets). Predictive power of the complexity 

of dynamic modularity (dM-E) and participation coefficient (dPC-E) when 

controlling for functional connectivity complexity (dFC-E). Odds ratios 

and p -values. 

Parcellation dM-E and dPC-E dFC-E 

Measure Odds ratio P-value Odds ratio P-value 

Cortex- 

100 

dM-E 1.94 0.00800 1.71 0.02 

dPC-E 1.28 0.17665 1.79 0.02 

Subcortex dM-E 2.61 0.00105 1.60 0.04 

dPC-E 3.06 0.00022 1.80 0.01 

Cerebellum dM-E 2.47 0.00109 1.01 0.48 

dPC-E 3.77 0.00003 1.08 0.39 
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.4. Sample entropy of integration and segregation dynamic graph theory 

etrics for the cortex, subcortex and cerebellum 

Given that subcortical dSW-E has more predictive power than the

ortex, we sought to investigate whether this striking effect ( Fig. 3 )

s specific to SW or can be generalised to other topological organ-

sation (graph theory) measures that are relevant to consciousness

heory. To this end, we chose two measures that are conceptually

in terms of integration and segregation Rubinov and Sporns, 2010 ;

porns and Zwi, 2004 ; Lord et al., 2017 ) and statistically related to SW

 Jarman et al., 2017 ). The first is modularity, which measures the ex-

ent to which a network can be divided, therefore being a proxy mea-

ure for segregation in terms of functional differentiation at a network

evel. The second measure is participation coefficient, that measures to

hat extend different modules (i.e., functional subdivisions calculated

ia modularity) of the network are interconnected, therefore indicating

he degree of integration in terms of the merging of information from

ifferent modules. We analysed these measures as we did SW in the

reviously described procedure (from Fig. 1 D onwards). 

Firstly, we established whether the complexity of network dynamics

ad predictive power in the cortex, subcortex and cerebellum. We found

hat the complexity of dynamic modularity (dM-E) could predict levels

f awareness beyond the complexity of dFC-E in all subsystems (cortex,

ubcortex and cerebellum see Table 3 ). The dynamics of participation

oefficient had predictive power only in the subcortex and cerebellum

 Table 3 ). In the alternative analysis (with LON-DOC datasets) results

id not reproduce for the dM-E of the cortex (see appendix K for full

esults). 

Remarkably, when we inserted the complexity of dynamic partic-

pation coefficient (dPC-E) of the different subsystems into the same

odel, we saw that the odds ratio (OR) of the cerebellum (OR = 2.76;

.I. = 1.46:5.71, p = 0.001) was higher than both that of the subcor-

ex (OR = 2.14; C.I. = 1.08:4.44, p = 0.01) and cortex (OR = 1.09;

.I. = 0.63:1.90, p = 0.36) (appendix M). The complexity of modular-

ty dynamics (dM-E) had higher effect sizes (i.e., odds ratios) in the

ubcortex (OR = 2.15 C.I. = 1.10:4.42, p = 0.013) than the cortex

OR = 1.52; C.I. = 0.86:2.75, p = 0.07) and the cerebellum (OR = 1.61;

.I. = 0.86:3.07, p = 0.06). These results also reproduced in the second

nalysis (appendix M). 

Using the behavioural scores collected in the original seman-

ic propofol study for the CAM dataset ( Adapa et al., 2014 ) we

ound that subcortical dPC-E was inversely correlated to reaction time

Rho = − 0.40, p = 0.017). Speculatively, reaction time may indicate a

hange in the consciousness-relevant global availability of information

e.g., Global Neuronal Workspace; ( Baars, 2005, 2002 )). However, we

ake this correlation as evidence that subcortical dPC-E is relevant to

bservable behaviour which may only be tangentially related to con-

ciousness proper. Overall, these results suggest that decreasing subcor-

ical complexity of network dynamics (beyond SW) is a characteristic of

ecreasing levels of awareness. 
11 
.5. Predictive power of dynamic graph theory metrics for between 

ubnetwork dynamics beyond dynamic functional connectivity 

Until now we have investigated the predictive power of network dy-

amics of the whole-brain and of individual subsystems (cortex, subcor-

ex and cerebellum). In Information Integration Theory ( Tononi et al.,

016 ) and other accounts of consciousness ( Baars, 2005 ; Alkire et al.,

008 ; Lamme, 2006 ; Shine et al., 2019 ), the communication between

ubsystems (e.g., between the cortex and subcortex) has been proposed

s fundamental to the emergence of complex awareness. Therefore, we

lso investigated whether between subsystems network dynamics were

redictive of levels of awareness. Specifically, we defined three dy-

amically varying between-system networks: cortex-cerebellum, cortex-

ubcortex and subcortex-cerebellum (described in section 2.5 ). We cal-

ulated the dynamic complexity of path length, participation coefficient

nd modularity. The clustering coefficient and therefore small world

ropensity could not be calculated as networks defined in this manner

re not amenable to this measure (explained in methods, Section 2.5).

e found that all between system graphs and network properties dis-

layed dynamics that were predictive of levels of awareness despite con-

rolling for the underlying functional connectivity. Results are presented

n Table 4 . 

.5.1. Independent predictive power of between and within subsystem 

etwork dynamics 

We then tested whether between subsystem network dynamics had

ny independent predictive power compared to within subsystem net-

ork dynamics. To this end we inserted all within and between sys-

em (cortex, subcortex and cerebellum) dynamic network complexity

easures in the same analysis and ran an ordinal logistic regression

or each graph theory metric (small worldness, participation coefficient

nd modularity). We found that for the dynamic complexity of partic-

pation coefficient, the cortex (OR = 0.44, C.I. 0.20:0.95, p = 0.021),

he cerebellum (OR = 2.22, C.I. = 1.01:5.21, p = 0.027), the cortex-

ubcortex network (OR = 2.88, C.I. = 1.21:7.60, p = 0.01) and the

ubcortex-cerebellum (OR = 2.59, C.I. = 0.99:7.07, p = 0.028) were sig-

ificant predictors. For the dynamical complexity of modularity only the

ubcortex-cerebellar topology was a significant predictor (OR = 2.07,

.I. = 0.97:4.60, p = 0.03). Finally, for the dynamical complexity

f path length, only the subcortex showed significance (OR = 2.21,

.I. = 1.03:5.00, p = 0.02), however the assumptions of the ordinal lo-

istic regression were violated for this model (Brant’s test p < 0.05). 

These results ( Table 5 ) confirm that dynamic network structure be-

ween subsystems may also be independently predictive of levels of

wareness. Specifically, the dynamic organisation of subcortex in re-

ation to the cortex and cerebellum seems to have independent predic-

ive power compared to other networks. Thus, these analyses support

he notion that the mode of communication between cytoarchitectoni-

ally differentiated systems of the brain may indeed be important for the

mergence of consciousness ( Tononi et al., 2016 ; Di Perri et al., 2016 ;

lkire et al., 2008 ; Guldenmund et al., 2013 ; Spindler et al., 2021 ). 

.6. Independent predictive power of dynamic graph theory metrics for the 

ortex, subcortex and cerebellum 

Finally, we sought to investigate whether the complexity of the vari-

us network properties investigated (small worldness, participation co-

fficient and modularity) had independent predictive power in the dif-

erent subsystems (cortex, subcortex and cerebellum). To this end, we

nserted all dynamic complexity metrics (dSW-E, dM-E and dPC-E) as co-

ariates in the same ordinal logistic regression as this would permit fur-

her interpretation. We found that dSW-E had unique predictive power

n the cortex (OR:3.49, C.I. = 1.88:6.89 p = 0.00007) and the subcortex

OR:5.12, C.I. = 2.18:13.61 p = 0.0002). Conversely, dPC-E had inde-

endent predictive power in the cerebellum (OR:3.30, C.I. = 1.73:6.81,
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Table 4 

Between subsystem ordinal logistic regression results for the dynamic complexity of path 

length (dPL-E), modularity (dM-E) and participation coefficient (dPC-E). 

Dynamic graph theory complexity dFC-E 

Network Measure Odds ratios p-value Odds ratio p-value 

Cortex-cerebellum dPL-E 4.68 0.00001 0.67 0.10 

Cortex-cerebellum dM-E 2.72 0.00036 1.20 0.23 

Cortex-cerebellum dPC-E 3.50 0.00003 0.96 0.45 

Cortex-subcortex dPL-E 3.72 0.00042 0.76 0.21 

Cortex-subcortex dM-E 1.80 0.01602 1.41 0.10 

Cortex-subcortex dPC-E 4.63 0.00001 0.96 0.45 

Subcortex-cerebellum dPL-E 4.12 0.00046 0.66 0.14 

Subcortex-cerebellum dM-E 2.99 0.00043 1.08 0.39 

Subcortex-cerebellum dPC-E 4.83 0.00001 1.08 0.39 

Table 5 

Odds ratios and p-values for between and within subsystem network dynamics when inserted into the same ordinal logistic regression. Results for the 

dynamic complexity of participation coefficient (dPC-E), modularity (dM-E) and path length (dPL-E) presented. 

Measure Cortex Subcortex Cerebellum Cortex-cerebellum Cortex-subcortex Subcortex-cerebellum 

Odds Ratio p-value Odds Ratio p-value Odds Ratio p-value Odds Ratio p-value Odds Ratio p-value Odds Ratio p-value 

dPC-E 2.20 0.02 1.34 0.20 2.22 0.03 1.01 0.50 2.88 0.01 2.59 0.03 

dM-E 1.25 0.23 1.67 0.07 1.23 0.29 1.46 0.17 1.22 0.28 2.07 0.03 

dPL-E 1.55 0.13 2.21 0.02 1.00 0.50 2.46 0.07 1.36 0.26 1.04 0.47 

Table 6 

For main (CAM-DOC) analysis. dM-E, dPC-E and dSW-E inserted in the same ordinal logistic 

regression as covariates for each subsystem (cortex [two granularities 100 and 400], subcortex, 

and cerebellum), odds ratios (OR), p -values and omnibus brants test presented. 

NETS dPC-E dM-E dSW-E 

Odds ratios p-value Odds ratios p -value Odds ratios p-value 

COR-100 0.79 0.2092 1.71 0.04 3.49 0.00007 

COR-400 1.13 0.3228 1.36 0.16 2.28 0.00566 

SUB 1.76 0.0749 1.60 0.09 5.12 0.00021 

CEREB 3.30 0.0003 1.73 0.06 0.80 0.24885 
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 = 0.0003). See Table 6 for more details for each measure in each sub-

ystem. In the alternative anaesthesia dataset, we found results to not

eproduce for the cortex (see appendix N for full analyses). Either way,

hese results indicate that dSW-E is predictive of levels of awareness in

he subcortex when controlling for the dynamics of other network prop-

rties, whilst the dynamics of participation coefficient had independent

redictive power for the cerebellum. This is a significant result, as the-

rists have indicated that the cerebellum may not be important for con-

ciousness ( Tononi et al., 2016 ). Our analysis shows that the cerebellum

oes indeed display uniquely predictive consciousness-relevant dynam-

cs at a network level. Across all subsystems and measures the subcortex

ad the greatest effect size. 

. Discussion 

In consonance with our hypothesis, a key finding of this study is that

he temporal complexity of network architecture increases with levels of

wareness. We integrate graph theory ( Schroter et al., 2012 ; Monti et al.,

013 ; Achard et al., 2012 ; Crone et al., 2014 ) and dynamics ( Luppi et al.,

019 ; Barttfeld et al., 2015 ; Huang et al., 2020 ; Demertzi et al., 2019 ) to

how that the temporal complexity of information architecture reliably

cales with levels of awareness. Importantly, we show that the complex-

ties of subcortical changes over time is particularly predictive of levels

f awareness. Such cortical and subcortical dynamics possibly underlie

he varied streams of contents and states that characterise consciousness

s an inherently dynamic phenomenon ( Tononi et al., 2016 ; Carhart-

arris and Friston, 2019 ; Dehaene and Christen, 2011 ; James, 1890 ;

edoux and Brown, 2017 ; Panksepp, 2011 ). 

Previously, changes in static ( Di Perri et al., 2016 ; Stamatakis et al.,

010 ; Naci et al., 2018 ) and dynamic functional connectivity

 Barttfeld et al., 2015 ; Demertzi et al., 2019 ; Golkowski et al., 2019 ;
12 
avanna et al., 2018 ) in different states of consciousness have been

idely reported. We advance this body of research by showing that the

ample entropy of dynamic FC is predictive of levels of awareness; but

mportantly, we additionally show that network architecture dynamics

ave consistent explanatory power above and beyond the variations in

unctional connectivity. 

This suggests that awareness has characteristic dynamic global in-

ormation architectures (topologies) that cannot be reduced to simple

C. In other words, the dynamic re-configuration of the global func-

ional architecture ( “the interrelation of parts ”), rather than the abso-

ute synchronisation of brain regions, may be particularly important to

onsciousness. These findings, therefore, speak to theories that posit a

lobal workspace (of information Baars, 2005 ), or the irreducibility of

he whole to its parts ( Tononi et al., 2016 ). In fact, we show that the

ynamics of architectures that favour integration and segregation con-

istently scale with increasing levels of awareness. It is therefore possible

hat such architectures may contribute to an integrated dynamic global

orkspace of information across time. 

A key result of this study may supply some interpretations in regards

o what may be particularly important for consciousness emergence.

his is the difference between cortical and subcortical effects. Although

he cortex was a significant predictor on its own, we found that the com-

lexity of dynamic subcortical topology is more consistent and powerful

n predicting levels of awareness than the cortex. This suggests that the

omplexity of topological functional dynamics in the subcortex is par-

icularly sensitive to different levels of awareness. 

In fact, the subcortical system is thought to provide fundamental

affective, interoceptive and sensory) inputs for cortical processing, and

s hypothesised to have underpinned the first subjective experiences in

volutionary history and subsequent phylogenic development of higher-

rder self-awareness ( Carhart-Harris and Friston, 2019 ; Panksepp, 2011 ;
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olms, 2013 ). Despite studies on the dynamics of consciousness tend to

ocus mainly on the cortex ( Barttfeld et al., 2015 ; Huang et al., 2020 ;

emertzi et al., 2019 ), recent evidence ( Lutkenhoff et al., 2020a ) shows

hat the complexity of cortical response to perturbation in DOC in-

ersely correlates with atrophy in arousal-related subcortical structures

ather than in cortical structures. Of note is that the cortex may have a

arger variation between subjects than the subcortex ( Salehi et al., 2020 ;

eilong et al., 2018 ) which is philogenically older and supports basic

hysiological functions ( Panksepp, 2011 ). This is especially pertinent

n the DOC dataset which is characterised by ischaemic or traumatic

amage which may induce a subsequent reorganisation of brain func-

ion (e.g., Crone et al., 2014 ; Lamme, 2006 ; Lutkenhoff et al., 2020a ).

onetheless, dynamic complexity was calculated using the subject spe-

ific timeseries, and therefore did not rely on variability between sub-

ects and conditions (e.g., Huang et al., 2020 ; Salehi et al., 2020 ). 

Although some authors propose that subcortical structures func-

ion as an unconscious modulator of behaviour and cognitive con-

cious access ( Ledoux and Brown, 2017 ), rather than underpinning ba-

ic awareness ( Panksepp, 2011 ; Solms, 2013 ), these results suggest that

nvestigations into consciousness that focus exclusively on the cortex

 Tononi et al., 2016 ; Baars, 2005 ), may necessitate further verification

n the future ( Shewmon et al., 1999 ). In fact, the present results sug-

est that investigating subcortical information may aid finer differenti-

tion of different conscious states ( Panksepp, 2011 ; Lutkenhoff et al.,

020a,b ) for clinical purposes. 

In a similar vein, although some researchers do not consider the cere-

ellum important for consciousness ( Tononi et al., 2016 ); we found that

ntegration-relevant network dynamics (particularly dPC-E) had pre-

ictive power for levels of awareness beyond other network dynam-

cs (dSW-E & dM-E) in this system. Interestingly, theorists have posited

hat the cerebellum may not be fundamental to consciousness due to its

ack of integrative capacity ( Tononi et al., 2016 ). Conversely, our anal-

sis suggests that a network property which is relevant to integration

participation coefficient being a measure of intramodular connectiv-

ty) is most predictive in the cerebellum ( Table 6 ). Furthermore, we

lso show that dPC-E has unique predictive power in the cerebellum

ven when controlling for the underlying functional connectivity dy-

amics ( Table 3 ) and the network dynamics of other systems (Section

.4). These results lend support to notions that the cerebellum may have

 discernible role in awareness ( Clausi et al., 2017 ; Johnson et al., 2019 ).

Furthering our understanding of the network dynamics associated

ith awareness, we also show that the temporal variation of the network

opology between the cortex, subcortex and cerebellum are significant

redictors of levels of awareness. Specifically, the dynamic architecture

f activity coordination between the subcortex and the cortex and be-

ween the subcortex and cerebellum have independent predictive power

hen participation coefficient is investigated. Beyond suggesting the rel-

vance of systems beyond the cortex to consciousness, this also suggests

hat typical awareness might be characterised by a dynamic cooperation

etween the cytoarchitectonically distinct regions ( Shine et al., 2019 ;

pindler et al., 2021 ). 

Another contribution of this paper is the investigation of the rel-

vance of SW as a metric for consciousness. Although several mea-

ures of SW have been proposed ( Humphries and Gurney, 2008 ;

uldoon et al., 2016 ; Telesford et al., 2011 ); its calculation in static

unctional brain networks have been problematic ( Rubinov and

porns, 2010 ). Such issues, other than being evidenced by the

nconsistency between previously published studies on conscious-

ess ( Schroter et al., 2012 ; Monti et al., 2013 ; Luppi et al.,

019 ; Barttfeld et al., 2015 ; Achard et al., 2012 ; Crone et al.,

014 ), were found within this study (appendix C). Here, con-

ersely, we show that the richness of the dynamics of this topo-

ogical measure robustly decreases with diminishing levels of aware-

ess, independently of the cause of unconsciousness, dataset, brain

egion definition, threshold, and different measures of SW. The SW

opology implies an information communication architecture that is
13 
imultaneously efficient and specialised. We show that the dynamics

f these two components underlying SW, path length and clustering

oefficient, are individually predictive of levels of awareness. Such

W components are thought to be related to information transmis-

ion and cognition in both health and disease ( Sporns and Zwi, 2004 ;

an den Heuvel et al., 2008 ; Bassett and Bullmore, 2017 ; Tan and

heong, 2017 ; Takagi, 2018 ; Schilling, 2005 ; Yu et al., 2011 ; Wu et al.,

012 ; Achard et al., 2006 ; Zhu et al., 2020 ). Therefore, it is possible that

he reconfiguration of SW topology over time may indicate variations

n information processing (and therefore cognitive states ( Bassett and

ullmore, 2017 )), which would intuitively increase proportionally to

he level of awareness ( Carhart-Harris et al., 2014 ; Tononi et al., 2016 ;

aureys et al., 2007 ). In fact, neural variability has been proposed

o be essential to normal brain function ( Northoff and Huang, 2017 ;

aschke et al., 2021 ). Corroborating this point are several lines of

esearch that show how the dynamics of functional networks are re-

ated to different types of cognition (e.g., Baars, 2002 ; Wu et al., 2012 ;

chard et al., 2006 ; Zhu et al., 2020 ). Such cognition-related changes

ver time would presumably have an overlap with experiential dynam-

cs that are characteristic of awareness. 

However, we have also shown that consciousness-relevant

opological dynamics are not limited to SW. The sample en-

ropy of dynamic modularity and participation coefficient, may

ndex changes in the formation and inter-communication of dy-

amic functional subsystems (e.g., in visual attention), and as

uch may provide a good metric of variations in the stream of

onscious contents or cognitive states that is typical for conscious-

ess ( Edelman and Gally, 2013 ; Di Perri et al., 2016 ; Godwin and

arry, 2015 ; Huang et al., 2020 ; Dixon et al., 2017 ; Margulies et al.,

016 ). Specifically, we show that, although these measures are pre-

ictive beyond functional connectivity dynamics when considered

ndividually, participation coefficient had unique predictive power

hen in cerebellum. Analogously to SW, participation coefficient and

odularity have been shown to be related to cognition and information

rocessing ( Godwin and Barry, 2015 ; Finc et al., 2017 ; Han et al., 2020 ;

ertolero et al., 2018 ; Cohen and Esposito, 2016 ; Hilger et al., 2017 ;

rnemann et al., 2015 ). Thus, these interpretations are complementary

o those made above for SW, in that the dynamic entropy of these GTA

roperties may indicate dynamic variations in information processing

tate (and therefore, contents of consciousness). 

Given the potential existence of many different types (or dimen-

ions) of consciousness, that the dynamic complexity of several graph

heory properties may display predictive power, and that these mea-

ures display high within condition standard deviations ( Figs. 2 & 3 );

e tentatively suggest that these results may primarily relate to the

pi ‑phenomenology of consciousness. In other words, the dynamic com-

lexity of functional topology necessarily arises with consciousness, but

t may not be a sufficient condition for the emergence of awareness. 

.1. Strengths and weaknesses 

As for the strengths and weakness of this study; the temporal res-

lution of the data-collection technique and the sliding window ap-

roach constitute a limitation of this study, as it only can measure coarse

imescales of brain activity. Furthermore, DOC data is inherently noisy

nd is characterised by high degrees of variability and misdiagnosis.

e selected this subset of participants out of a bigger dataset to en-

ure the data had acceptable quality. The ordering of conditions into

ecreasing levels of awareness may be controversial, in that it reduces

ubjective qualitative states to a two-dimensional quantity, despite be-

ng clinically ( Laureys et al., 2007 ; Giacino et al., 2004 ), theoretically

 Carhart-Harris et al., 2014 ; Tononi et al., 2016 ), and intuitively justi-

ed. Furthermore, there may be potential to confound behavioural re-

ponsiveness with awareness in this study. The use of such ordered con-

itions of awareness as a dependant variable may somewhat mitigate

uch a problem; however, the behavioural metrics used (coma recovery
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cale for DOC and reaction time for moderate anaesthesia) are primar-

ly related to behavioural responsiveness. To date responsiveness is still

ne of the best markers of conscious awareness as it is routinely used at

he bedside (e.g., Ramsay scale for anaesthesia or coma recovery scale

or DOC). Behavioural responsiveness, however, is not necessarily equal

o awareness (e.g., Crone et al., 2020 ; Adapa et al., 2014 ; Giacino et al.,

004 ; Cohen and Esposito, 2016; Owen et al., 2008 ; Owen et al., 2008).

onetheless, the results using behavioural measures support the notion

hat the approach used herein does have relevance to observable wilful

ehaviour, which tends to be correlated with consciousness. 

Conversely, in light of inconsistencies between previously published

tudies, the use of different SW measures and related graph theory mea-

ures constitute a strength of this study. In fact, the explicit controlling

or the dynamic FC (which underlies the graph theory measures) is a first

n graph-theory consciousness research and consolidates the robustness

nd interpretation of results ( van den Heuvel et al., 2017 ). The investi-

ation of between subsystem topology (e.g., cortex to subcortex exclu-

ively, Table 4 ) is also novel to our knowledge. The additional use of

n independent dataset to validate results, and the use of different par-

ellations (with different brain region definitions but similar numbers

AAL, N = 116 and WB126, N = 126), and with similar definitions but

ifferent granularities (WB125, WB553 described in appendix A), serve

o augment assurance in these results ( Hallquist and Hillary, 2018 ). 

These control analyses expand on the study by Crone and colleagues

 Crone et al., 2020 ) which investigated the variability over time of graph

heory properties, one of which (clustering coefficient) is part of the SW

easure. The use of sample entropy also may constitute a development

f this study as it takes into account the temporally sequential informa-

ion inherent in the data in a way that is robust to noise ( Varley et al.,

020 ; Richman and Moorman, 2000 ; Wang et al., 2014 ), rather than

alculating variability over all available data (see Section 2.6 for fur-

her discussion of this measure). Whilst Crone and colleagues focused

n dissociating consciousness from responsiveness in a DOC cohort, we

dopt a different approach to the same end in showing that the com-

lexity of network dynamics scales across vastly different consciousness-

elevant conditions. The present investigation of the independent pre-

ictive power of different subsystems in the brain and different graph

heory measures also provides an advancement on previous knowledge.

Of interest is that the CAM-DOC analysis tended to produce stronger

ffect sizes than the LON-DOC analysis ( Table 1 , Fig. 1 , appendices D–

). This may be due to the fact that the anaesthetic condition in the

ON dataset was characterised by relatively more sedation than the CAM

ataset (Sections 2.1.2 and 2.2.2 ) and perhaps is less appropriately or-

ered as in the present study (after control awake condition and before

inimally conscious state). Another explanation for the difference in ef-

ect sizes between analyses (CAM-DOC and LON-DOC), is that the CAM

nd DOC datasets were recorded at the same site, using the same scan-

er, whilst the LON-DOC analysis is effectively a cross-site analysis, po-

entially introducing confounds in the data. Nonetheless, although the

ON dataset did not have sufficient coverage of the cerebellum thus im-

eding a reproduction of cerebellar specific results, the LON-DOC anal-

sis consistently replicated subcortical results (appendices H–N). This

urther supports the robustness of subcortical dynamics in predicting

ifferent levels of awareness. 

. Conclusion 

We conclude, with a reasonable amount of confidence, that the com-

lexity of dynamic topology (in other words: the re-organisation of

unctional information architecture) does increase with the emerging

f awareness. We tentatively suggest that dynamics of information pro-

essing architecture reflects changes in cognitive content/mental state

hich is an intuitive characteristic of the vernacular “stream of con-

ciousness ”. The predictive power of the subcortex’s dynamic topology

s higher and more consistent compared to that of the cortex or the cere-

ellum, suggesting that the dynamic re-organisation of this system may
14 
e particularly important in typical awareness. The dynamics of func-

ional topology between the subcortex and other systems (cortex and

erebellum) also display unique predictive power. The complexity of

ynamic small world architecture is most predictive for the cortex and

he subcortex. The participation coefficient, conversely has independent

redictive power for the cerebellum. 
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