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Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve
the quality of life of patients with disabilities. Recently, time-resolved functional near-
infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of their
enhanced depth sensitivity leading to lower signal contamination from the extracerebral
layers. This study presents the first account of TR-fNIRS based BCI for “mental
communication” on healthy participants. Twenty-one (21) participants were recruited
and were repeatedly asked a series of questions where they were instructed to imagine
playing tennis for “yes” and to stay relaxed for “no.” The change in the mean time-
of-flight of photons was used to calculate the change in concentrations of oxy- and
deoxyhemoglobin since it provides a good compromise between depth sensitivity
and signal-to-noise ratio. Features were extracted from the average oxyhemoglobin
signals to classify them as “yes” or “no” responses. Linear-discriminant analysis (LDA)
and support vector machine (SVM) classifiers were used to classify the responses
using the leave-one-out cross-validation method. The overall accuracies achieved for
all participants were 75% and 76%, using LDA and SVM, respectively. The results
also reveal that there is no significant difference in accuracy between questions. In
addition, physiological parameters [heart rate (HR) and mean arterial pressure (MAP)]
were recorded on seven of the 21 participants during motor imagery (MI) and rest to
investigate changes in these parameters between conditions. No significant difference in
these parameters was found between conditions. These findings suggest that TR-fNIRS
could be suitable as a BCI for patients with brain injuries.

Keywords: functional near-infrared spectroscopy, brain-computer interface, motor-imagery, disorders of
consciousness, time-resolved measurement

INTRODUCTION

Brain-computer interfaces (BCIs) are devices that can be used to establish a communication
pathway between the brain and external devices (Shih et al., 2012). For people with chronic
paralysis following a severe spinal cord injury, surgical implants that record activity directly from
the brain can provide a means of interacting with the environment, such as controlling a prosthetic

Frontiers in Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 105

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00105
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00105
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00105&domain=pdf&date_stamp=2020-02-18
https://www.frontiersin.org/articles/10.3389/fnins.2020.00105/full
http://loop.frontiersin.org/people/701851/overview
http://loop.frontiersin.org/people/159923/overview
http://loop.frontiersin.org/people/896363/overview
http://loop.frontiersin.org/people/590579/overview
http://loop.frontiersin.org/people/6024/overview
http://loop.frontiersin.org/people/35162/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00105 February 15, 2020 Time: 17:9 # 2

Abdalmalak et al. Brain Computer Interface Using TR-fNIRS

(Mak and Wolpaw, 2009; Shih et al., 2012). However, the
need to implant electrodes limits the applications of this
invasive approach (Waldert, 2016). The use of neuroimaging
modalities as non-invasive BCI devices has garnered attention for
applications such as assessing cognition in patients with disorders
of consciousness (DOC), providing rudimentary communication
for patients in a completely locked-in state, and as a feedback tool
for stroke therapy (Naseer and Hong, 2015a; Kurz et al., 2018;
Rupawala et al., 2018). The most frequently used portable BCI
devices are based on electroencephalography (EEG). Although
EEG provides excellent temporal resolution, making it ideal
for real-time applications, the technology suffers from poor
spatial resolution and an inherent sensitivity to motion artifacts
(Padfield et al., 2019). Motion artifacts can have an impact
on the spectral content of EEG in the frequency range below
20 Hz and lead to large spikes in the signal that may be difficult
to correct (Mihajlovic et al., 2014). A promising alternative is
functional near-infrared spectroscopy (fNIRS) (Rupawala et al.,
2018) since it provides a good compromise between spatial and
temporal resolution.

Analogous to functional magnetic resonance imaging (fMRI),
fNIRS detects increases in neuronal activity through the
hemodynamic response — that is, the change in blood
oxygenation that occurs due to increased cerebral blood flow
(Monti et al., 2010). By measuring light absorption at a minimum
of two wavelengths, changes in concentrations of oxy- and deoxy-
hemoglobin can be calculated (Strangman et al., 2002). A number
of activation paradigms have been combined with fNIRS for BCI
applications, including motor imagery (MI), mental arithmetic,
working memory, and other mental activities (Naseer and Hong,
2015a; Rupawala et al., 2018). MI was the first task proposed
for BCI applications, which requires participants to perform
kinesthetic imagining, such as imagining squeezing a ball (Coyle
et al., 2004), finger tapping (Sitaram et al., 2007), and hand
grasping (Fazli et al., 2012). More recent fNIRS-BCI applications
have focused on activation paradigms that involve the prefrontal
cortex, such as mental arithmetic, to avoid signal loss due to
the presence of hair and concerns regarding the quality of the
NIRS signal for MI tasks (Shin et al., 2017; Qureshi et al., 2017).
However, MI has proven extremely valuable in fMRI studies
of DOC. Using tennis imagery as a mental task and focusing
on activation in the supplementary motor area (SMA), fMRI
was used to demonstrate residual brain function in a patient
with a diagnosis of vegetative state (Owen et al., 2006) and in a
subsequent study, to provide “yes” and “no” answers to a series of
questions (Monti et al., 2010).

To improve the sensitivity of fNIRS to MI, time-resolved
(TR) fNIRS has been investigated (Abdalmalak et al., 2017a,
2020). TR detection involves recording the arrival times of single
photons, which can be used to enhance depth sensitivity since
photons that interrogate superficial tissue are detected earlier
than photons that travel farther (i.e., deeper). Consequently,
improved sensitivity to the brain can be achieved by focusing
on late-arriving photons (Diop and St Lawrence, 2013; Lange
and Tachtsidis, 2019). This can be achieved by calculating
the statistical moments of the recorded distribution of arrival
times since higher moments are weighted toward late-arriving

light (Liebert et al., 2004; Milej et al., 2015). Previous work
has shown that the first moment (i.e., the mean time-of-
flight, <t>) provided a good compromise between depth
sensitivity and signal-to-noise for detecting MI activation from
probes interrogating the SMA and premotor cortex (PMC)
(Abdalmalak et al., 2017a). Using fMRI as a benchmark, the
classification accuracy of TR NIRS based on <t> analysis
was 93% (Abdalmalak et al., 2017a). In a follow-up study,
rudimentary communication was established with a locked-in
patient who was instructed to use tennis imagery as affirmation to
a series of questions (Abdalmalak et al., 2017b). The accuracy of
the fNIRS-BCI responses was confirmed because the patient had
regained sufficient eye movement to answer the same questions
after the fNIRS study.

The promising results of the two previous studies suggest
that time-resolved functional near-infrared spectroscopy (TR-
fNIRS) combined with MI could be a suitable BCI for mental
communication with DOC patients. The purpose of this study
was therefore to evaluate the classification performance of this
BCI approach on healthy volunteers. Each participant was asked
a series of four questions requiring yes-or-no answers. They were
instructed to imagine playing tennis to communicate “yes” and
to stay relaxed if the answer was “no”(Monti et al., 2010). Linear
discriminant analysis (LDA) and support vector machine (SVM)
algorithms were evaluated for classification accuracy as these are
the most commonly used machine-learning approaches used in
fNIRS-BCI studies (Naseer and Hong, 2015a).

MATERIALS AND METHODS

BCI Study
Twenty-one healthy participants with no history of any
neurological disease were recruited (6 females and 15 males,
mean age of 29± 5 years, age range 24–40 years). All participants
except one were right handed with no history of neurological
condition or severe brain injury. Written informed consent was
obtained from all participants and this study was approved by
the Research Ethics Board at Western University, which complies
with the guidelines of the Tri-Council Policy Statement (TCPS):
Ethical Conduct for Research Involving Humans.

For each experiment, the participants were seated in a Fowler’s
position on a reclining chair with a cushioned pillow to support
their neck. The TR system consisted of one emission and four
detection fibers (see section “TR-NIRS System”), which were
placed on the head in a cross pattern with the emission fiber
over FCz (according to the international template for EEG
electrode placement) in order to interrogate the SMA and PMC
(Abdalmalak et al., 2016). The fibers were secured on the head
using a 3D printed holder (TAZ 5, LulzBot, United States),
which was covered by an EEG cap (EASYCAP GmbH, Germany).
Figure 1B shows a picture of one of the participants wearing the
cap with the TR-NIRS optodes inserted.

Each participant was asked the following four questions that
could all be answered with a “yes” or “no” response:

1. Do you have any brothers?
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FIGURE 1 | (A) A participant wearing the TR-fNIRS cap with the probes positioned over the SMA and PMC. (B) Study protocol illustrating the rest and response
periods. The total time per question was 5:30 min, which consisted of five 30-s answer periods.

2. Do you have any sisters?
3. Are you at St. Joseph’s Hospital?
4. Are you feeling cold right now?

The order that questions were asked in was randomized
between participants to avoid any biases that may exist based on
the questions. These questions were chosen for their applicability
to patient studies. For instance, the first two questions were
factual with definitive known answers, while question 3 (“Are you
at St. Joseph’s Hospital?) served as a control since all participants
were expected to answer “yes.” The final question was chosen to
simulate asking patients a question where only they would know
the answer. Each question was asked five times in a block design
consisting of a 30-s baseline rest period followed by five cycles of
30-s alternating blocks of “answer” and “rest” periods for a total
duration of 5:30 min (Figure 1A). Answering all four questions
took 22 min to complete. Each question was asked prior to the
beginning of the run, and during the experiment the participants
were cued to either “rest” or “answer.” For a positive response,
the participants were asked to imagine playing a game of tennis
where they pictured themselves on a tennis court, swinging their
arm back and forth trying to hit a tennis ball over and over again.
For a negative response, the participants were asked to remain
completely relaxed; i.e., a “no” response would result in 5:30 min
of complete rest.

Physiological Monitoring Study
Since previous work has shown that changes in physiological
variables such as heart rate (HR) and mean arterial pressure
(MAP) can confound the fNIRS signal (Tachtsidis and
Scholkmann, 2016), a subset (seven of the 21) of the participants
were brought back for a separate session to investigate if the MI
paradigm would elicit changes in HR and MAP. A non-invasive
monitoring system was secured to the participant’s left arm
(Finapres Medical Systems, Netherlands) to record HR and
MAP continuously (sampling rate = 200 Hz) during a 5:30 min

experiment consisting of 30-s alternating blocks of rest and MI.
The cues given to the participants were similar to those given
in the BCI study, except in this experiment, the participants
were asked to imagine playing tennis every time they heard the
word “tennis.”

For each participant, the Finapres data were subsequently
down-sampled to 1 Hz and analyzed by averaging the data
across each of the five MI and rest blocks. This resulted in five
HR and five MAP values for each condition per participant.
A paired t-test was used to determine if there was a significant
difference between the two conditions across all participants
while correcting for multiple comparisons using Bonferroni.

TR-NIRS System
Data were collected using an in-house built TR-fNIRS system
(Milej et al., 2016b; Kewin et al., 2019). The system consisted
of two lasers (λ = 760 and 830 nm) pulsing at 80 MHz and
controlled by a Sepia laser driver (PicoQuant, Germany). The
laser heads were coupled in a 2.5 m bifurcated fiber (ϕ = 0.4 mm,
NA = 0.39, Thorlabs, United States) and four 1.5 m detection
fiber bundles (ϕ = 3.6 mm, NA = 0.55, Fiberoptics Technology,
United States) were used to deliver the diffusively reflected light
from the scalp to one of four hybrid photomultiplier tubes (PMA
Hybrid 50, PicoQuant, Germany). A time-correlated single-
photon counting module (HydraHarp 400, PicoQuant, Germany)
was used to record the distribution of times-of-flight (DTOF)
of photons for each detector every 300 ms using in-house-
developed LabVIEW (National Instruments, United States)
software (Milej et al., 2016a).

TR-fNIRS Data Analysis
Data were analyzed in MATLAB (MathWorks Inc., United States)
using the following processing steps. First, <t> was calculated for
every DTOF in a time series after truncating each DTOF at 10% of
the ascending side and 1% of the descending side to reduce noise
(Liebert et al., 2004).<t> was chosen since previous work has

Frontiers in Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 105

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00105 February 15, 2020 Time: 17:9 # 4

Abdalmalak et al. Brain Computer Interface Using TR-fNIRS

shown that it provided a good compromise between activation
sensitivity and signal-to-noise ratio (Abdalmalak et al., 2017a).
The change in mean time-of-flight (1<t>) relative to the initial
values was calculated, and these time series were corrected for
motion artifacts using an algorithm based on a moving standard
deviation and spline interpolation (Scholkmann et al., 2010; Metz
et al., 2015). The time-courses were detrended to remove slow
drifts by filtering with a high-pass filter with a cut-off period of
128 s and smoothed using a hemodynamic response function (full
width half maximum = 4 s) to remove fast frequency components,
such as those due to arterial pulsation. Next, the two 1<t>
time-courses for λ = 760 and 830 nm were converted into
changes in concentration of oxy- and deoxy-hemoglobin using
sensitivity factors obtained from Monte Carlo simulations. These
simulations were generated based on a 10-layer model in which
each layer was 0.2 cm thick. At each wavelength, the sensitivity
factor for the brain was calculated as the sum of the sensitivity
factors for all layers below 1 cm (i.e., layers 5–10) (Kacprzak et al.,
2007; Abdalmalak et al., 2017b).

To calculate the changes in the concentrations of
oxyhemoglobin (1CHbO2 ) and deoxyhemoglobin (1CHb),
1<t> was first converted to the corresponding change in the
absorption coefficient, 1µa (λ), for the two wavelengths (λ = 760
and 830 nm):

1µa (λ) =
1〈t〉

MTSF
=
〈t〉 − 〈t〉0

MTSF
(1)

where, MTSF is the sensitivity factor derived from Monte
Carlo simulations for 1<t> in the brain. Next, 1µa (λ) values
determined at 760 and 830 nm were converted to 1CHbO2 and
1CHb by:

1µa (λ) = εHbO2 (λ) 1CHbO2 + εHb (λ) 1CHb (2)

where, εHbO2 (λ) and εHb (λ) are the molar extinction
coefficients for oxy- and deoxy-hemoglobin, respectively.
After preprocessing, signals were averaged across all five trials
and across all channels for each question; i.e., the response for
each question was reduced to a single average time-course (60 s
consisting of two 15 s rest periods and 30 s response period)
for oxy- and deoxy-hemoglobin, respectively. Averaging was
conducted to improve the signal-to-noise ratio and reduce the
chance of detecting false positives based on the assumption that
all four channels were interrogating motor-planning areas.

Features (listed in Table 1) were then extracted from the
average time-courses for oxyhemoglobin only, since previous
work has shown that oxyhemoglobin yields better performance
for assessing task-induced brain activation (Mihara et al.,
2012; Naseer and Hong, 2013). In order to investigate which
combination of features produced the highest accuracy, an LDA
and an SVM classifier were used to classify the result using the
leave-one-out cross-validation method with all possible unique
feature combinations (15 combinations in total). The classifier
with the combination of feature(s) that yielded the highest
accuracy was used to obtain all the results presented in this
study. The code used for the analysis was developed in MATLAB
(MathWorks Inc., United States) using functions implemented

TABLE 1 | Features extracted from the oxyhemoglobin time-courses and how
each feature was calculated.

Feature Calculation

Median change in signal (SM) Difference between the median change during
the task (excluding the first 10 s) and the
preceding rest period

Signal slope (SS) Slope of the first 16 s during the task period

Contrast-to-noise ratio (CNR) Difference between the mean change during
the task and the preceding rest period divided
by the standard deviation of the rest period

Correlation coefficient (r) Correlation coefficient between the change in
the hemoglobin concentration time-courses
and the theoretical activation model (i.e., box
function convolved with a hemodynamic
response function)

in the Statistical and Machine Learning Toolbox. Furthermore, a
one-way ANOVA was used to determine if there was a significant
difference in accuracy between questions (i.e., questions 1–4).
Finally, to investigate the effect of the number of cycles on the
overall accuracy, the analysis was initially conducted with only
the first cycle and then repeated with increasing number of cycles
until all five cycles were included.

RESULTS

Of the 21 participants, three had to be excluded due to significant
motion artifacts and overall low signal quality. The overall
classification accuracy across all included subjects using LDA was
75% with a sensitivity of 83% and specificity of 58%. Similarly,
the classification accuracy using SVM was 76% with a sensitivity
of 79% and specificity of 71%. Individual classification accuracies
using both classifiers are shown in Table 2. The combination of

TABLE 2 | Individual classification results for each participant.

Participant number LDA Accuracy (%) SVM Accuracy (%)

1 75 75

2 50 50

3 75 75

4 50 75

5 100 100

6 100 100

7 75 75

8 100 100

9 75 75

10 100 100

11 75 100

12 75 75

13 75 75

14 50 75

15 50 50

16 100 75

17 75 50

18 50 50
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FIGURE 2 | 2D feature space showing the relationship between SS and r for
all of the “yes” and “no” responses.

features that produced the highest accuracy using LDA was SM,
CNR, and r, while SS and r contributed the most to the SVM
model. Since SVM produced a higher accuracy, it was used for
all further analyses. Figure 2 shows the SS and r plotted in a 2D
feature space for the “yes” and “no” responses in order to visualize
the difference between the two responses.

The oxy- and deoxy-hemoglobin time-courses for one
participant and for two different questions are shown in Figure 3.
For the time-course shown on the left, which corresponded to
the question: “Are you at St. Joseph’s Hospital?,” a clear increase
in oxyhemoglobin and a concurrent, but smaller, decrease in
deoxyhemoglobin can be observed during the response periods.
For the second question in which the participant’s response was
“no,” there were no noticeable changes in either 1CHbO2 or 1CHb.
As expected, these two questions were classified as “yes” and
“no,” respectively.

Average time courses of 1CHbO2 and 1CHb for each
consecutive question are presented in Figure 4. Since the order
of the questions was randomized, each subplot does not represent

the response to a particular question, but rather the response to
all questions asked in one period. For each participant, the time
courses were first averaged across trials and channels, resulting in
a single time course per question. These time-courses were then
averaged across all participants for the “yes” and “no” responses
based on the classifier output. The “yes” responses show the
expected hemodynamic changes in oxy-and deoxy-hemoglobin,
which are absent in the “no” responses.

The overall accuracy of the SVM results is plotted as a
function of the number of cycles in Figure 5A. As expected,
increasing the number of cycles used for classification improved
accuracy. The box-plot in Figure 5A shows variation in accuracy
for each cycle for all unique combinations of features (15
in total), and the red circles represent the accuracy obtained
using the optimum combination of features for SVM (i.e., SS
and r). Since the best combination of features was optimized
for five cycles, using only one, two or four cycles leads to
different sets of optimum features. The classification accuracies
for questions one to four are shown in Figure 5B. Once again,
the accuracy presented is not for a particular question but based
on the order of the questions asked. Although there appear
to be differences in accuracy between questions, there were no
statistically significant differences.

To further investigate the performance of the SVM classifier,
the oxyhemoglobin signals that were classified as “yes” or “no”
were averaged together for all trials, channels, participants, and
questions. In other words, the oxyhemoglobin time-courses
for the “yes” and “no” responses in Figure 4 were averaged
together to end up with one time-course for all “yes” responses
and one time-course for all “no” responses. In addition, the
oxyhemoglobin time-courses for the ground truth responses,
i.e., based on the participants’ responses recorded after the
study, were averaged together to produce ground-truth “yes”
and “no” oxyhemoglobin time-courses. The ground-truth “yes”
signal represents the group average for all oxyhemoglobin signals
for which participants answered “yes.” Likewise, the ground-
truth “no” is the group average for questions where participants

FIGURE 3 | Sample time courses of 1CHbO2 and 1CHb for one participant and two questions. Each time course was averaged across data from all four channels.
The time course on the left was classified as “yes” while the one on the right was classified as “no.” The gray boxes indicate the response periods. The error bars
represent the standard error of mean across channels.
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A

B

FIGURE 4 | 1CHbO2 (red) and 1CHb (blue) for each question averaged across all trials, channels, and participants. Each column represents a different question. The
first row (A) shows the signals that were classified as “yes” while the second row (B) shows the signals that were classified as “no.” The gray boxes indicate the
response period. The error bars represent the standard error of mean across participants (n = 18).

answered “no.” These two sets are shown in Figure 6. As
expected, the “yes” responses showed an increase in the signal
during the response period. Interestingly, the ground truth “no”
time-course also showed an unexpected increase in the signal
during the response period upon visual inspection. This change
was approximately 25% of the maximum change observed for the
corresponding “yes” time-course.

The MAP and HR values averaged across the seven
participants for MI and rest, respectively, are shown in Table 3.
No significant difference between the two conditions was found.

DISCUSSION

The goal of this study was to assess the feasibility of TR-fNIRS
as a BCI for mental communication. The study focused on a

A B

FIGURE 5 | (A) Classification accuracy obtained versus the number of cycles
used for classification. The box plot shows the variation in accuracy for all 15
unique combinations of features. The red circles represent the accuracy for
the set of features that was selected as optimum (B) Classification accuracy
obtained for questions 1–4 using five cycles for classification.

MI paradigm (i.e., imagine playing tennis) that has been used
previously with fMRI to assess residual brain function in DOC
patients and to provide rudimentary mental communication
(Monti et al., 2010). Furthermore, the detection sensitivity of TR-
fNIRS for this tennis imagery task was found to be comparable
to fMRI in a cohort of healthy participants (Abdalmalak et al.,
2017a). Based on these promising results, the motivation for
this study was to evaluate the combination of TR-NIRS and
MI for mental communication involving multiple closed-ended
questions. A series of four questions was asked of each healthy
participant and classification accuracy was assessed for two
commonly used machine-learning algorithms (LDA and SVM)
(Hong et al., 2018). Both algorithms produced similar accuracies
(76% for SVM and 75% for LDA); however, SVM resulted in a
better balance between sensitivity and specificity (79% and 71%,
respectively) compared to LDA (83% and 58%, respectively).
Overall, these estimates of classification accuracy are in-line
with previous reports (Naseer and Hong, 2015a) and meet the
minimum threshold of 70% for a BCI to be considered effective
for communication (Proulx et al., 2018).

Although the classification accuracy is comparable to results
from other fNIRS studies involving various activation tasks for
mental communication (Naseer and Hong, 2015b), it was less
than the accuracy reported in an fMRI study involving the same
tennis imagery task (Monti et al., 2010). One possible explanation
is related to the challenges of detecting MI by fNIRS due to the
presence of hair and the increased scalp-brain distance over the
motor-planning areas relative to the frontal regions (Cui et al.,
2011). The latter was likely compounded by the observation from
fMRI studies that MI-related activation in the SMA frequently
occurs at a greater distance from the cortical surface (Monti et al.,
2010; Taube et al., 2015). TR detection will help compensate
for activation at greater depths (Milej et al., 2019); however,
these challenges reflect the lower classification accuracy generally
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FIGURE 6 | 1CHbO2 averaged across channels, trials and participants for (A)
the “yes” responses and (B) the “no” responses. The solid lines show the
signals based on the SVM classifier output while the dashed lines represent
the ground truth responses. The error bars represent the standard error of
mean across participants (n = 18).

TABLE 3 | Physiological parameters obtained during motor imagery and rest.

Rest Change during MI Range

MAP (mmHg) 77 ± 8 2 ± 1 −3, 5

HR (bpm) 70 ± 10 3 ± 2 −5, 5

MAP, Mean arterial pressure; HR, Heart rate.

reported for MI compared to tasks that activate the prefrontal
cortex (Shin et al., 2017; Qureshi et al., 2017). It should also
be noted that the activation contrast elicited by MI is less than
for motor execution tasks (Batula et al., 2017), and activation
for mental imagery tasks is not detectable in a small subset
of participants, typically on the order of 10–15% (Fernández-
Espejo et al., 2014). Unlike our previous study (Abdalmalak
et al., 2017a), the current study did not include fMRI to confirm
detectable MI activation for all participants. This would explain
why the sensitivity in the current study (on the order of 80%)
was lower than the sensitivity calculated previously when MI
activation detected by TR-fNIRS was compared to fMRI results
(Abdalmalak et al., 2017a).

While classification accuracy has been the most commonly
used metric in fNIRS-BCI studies (Naseer and Hong, 2015a;
Rupawala et al., 2018), sensitivity and specificity were also
computed in the current study. These are important metrics in
BCI applications for evaluating the confidence that can be placed
on a measured response. This is relevant to applications involving
DOC patients that are aimed at evaluating residual brain function
and providing rudimentary mental communication (Peterson

et al., 2015). The sensitivity of the LDA and SVM algorithms
were similar (83% and 79%, respectively), but specificity was
lower for both: 58% for LDA and 71% for SVM. Considering that
specificity reflects the ability of the classifier to accurately detect
a “no” response, the poorer results indicate that the inherent
fluctuations in NIRS time courses were leading to false positives.
This is confirmed by the average time courses shown in Figure 6.
The ground truth “no” response showed an unexpected signal
increase during the response period at approximately the 40-s
mark. Similar artifacts are evident in other fNIRS-BCI studies
that relied on a stable signal time-course to reflect a “no” response
(Naseer et al., 2014), and reflect the challenges of removing all
sources of noise in the pre-processing steps, particularly motion
artifacts and low-frequency spontaneous oscillation.

There are a number of potential approaches that could be
used to improve specificity. The first would be to use an active
task for the “no” response as used in fMRI studies (Monti et al.,
2010). For example, the “yes” response could be MI, while the
“no” response could be a different task that activates brain areas
other than the SMA (Bauernfeind et al., 2011). However, it is
important to acknowledge that asking patients to perform two
complex tasks, such as MI and mental arithmetic, could be
challenging. Alternatively, “yes” and “no” responses could be
decoded temporally instead of spatially. Bettina and colleagues
demonstrated that healthy controls were able to encode at least
four distinct answers on a single trial level by performing
MI to the temporal prompt corresponding to the desired
answer (Sorger et al., 2009; Nagels-Coune et al., 2017). Finally,
participants could undergo some form of training to provide
some familiarization with using MI for mental communication.
None of the participants in this study received training prior to
data collection, and it would be valuable to assess if classification
accuracy would be improved on a return visit.

A variety of features have been investigated for fNIRS-BCI
applications, including mean changes in concentration of oxy-
and/or deoxy-hemoglobin, signal slope, the shape of the signal
responses (i.e., skewness and kurtosis), et cetera (Naseer and
Hong, 2015a). This study included similar features (SM, SS, CNR,
see Table 1) as well as the correlation coefficient (r) between
the HbO2 time course and the model function obtained by
convolving a box function representing task periods with the
hemodynamic response function. For features such as the SS,
there is some ambiguity regarding the appropriate period for
calculating the signal slope. In this study, the slope was calculated
over 16 s; however, a shorter period could have been selected
based on the hemodynamic response function that peaks at 7 s.
To investigate the potential impact of reducing the period, the
analysis was repeated for a slope calculated over the first 7 s of the
task period. This change resulted in a small reduction (4%) in the
accuracy for the SVM algorithm, which is likely due to variability
in the peak hemodynamic response between individuals (see
Figure 4 channel 2 for example).

A limitation with using features like r is the large amount of
data required to obtain a reliable estimate. This was confirmed
by the results presented in Figure 5A, showing the expected
improvement in accuracy as the number of task cycles increased
from one to five. The obvious disadvantage of using all five cycles
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is that the approach is not suitable for real-time applications.
However, for our goal of applying this methodology to helping
evaluate consciousness in DOC patients, this is not a concern.
Furthermore, r was the only feature common to both the final
SVM and LDA algorithms, highlighting its value for optimizing
classification accuracy.

One of the challenges with generic BCIs is inter-subject
variability. Individual accuracies in this study varied from chance
level to classifying all four questions correctly (Table 2). Psycho-
physiological factors, such as attention and memory load, could
contribute to the observed inter-subject variability. It has also
been suggested that females, individuals over the age of 25,
and those who play instruments are likely to perform better at
mental imagery tasks (Randolph, 2012; Ahn and Jun, 2015). In
this study, there was an imbalance between males and females;
however, the total number of participants was not sufficient
to assess if sex or age could have affected task performance.
Additionally, it is known that task-induced changes in HR and
MAP can potentially degrade the fNIRS signals, leading to false
positives (Caldwell et al., 2016). To assess this potential source
of error, HR and MAP were measured in seven participants
performing MI in the same block design used in the BCI
experiments, and no significant difference between the two
conditions was found.

Another common challenge with most BCIs for mental
communication is the trade-off between accuracy and the
time delay before defining a response. In general, the greater
the number of trials acquired prior to feature extraction and
classifying the signals, the greater the SNR and hence the
overall classification accuracy. BOLD-dependent modalities such
as fMRI and fNIRS are inherently slow as the hemodynamic
response peaks around 7 s post-stimulus. In contrast, EEG, which
directly measures neuronal activity, can provide much faster
responses. However, the majority of EEG-based BCIs do not
display the results in real-time since most of these are classifier-
based and often take time to judge and classify the signals to
ensure accuracy. It is important to emphasize that the intended
goal of our TR-fNIRS BCI is to assess residual awareness in DOC
patients and therefore our protocol is intentionally long in order
to maximize the confidence in the recorded responses.

In conclusion, this work highlights the potential of TR-fNIRS
as a BCI for mental communication. Our approach focused
on using a few detection channels that targeted specific brain
regions known to be involved with MI. This is a relatively simple
approach that is well suited for BCI applications without the
need for training (Abdalmalak et al., 2017b). Our results indicate
that the current method provides sufficient classification accuracy

for clinical application. Since the technology is readily adaptable
to other tasks/brain regions, incorporating separate active tasks
for a “no” response could be considered to further improve the
accuracy. In addition, the use of more sophisticated classifiers
could be explored to further enhance performance.
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