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There is accumulating evidence that spontaneous fluctuations of the brain are sustained
by a structural architecture of axonal fiber bundles. Various models have been employed
to investigate this structure-function relationship. In this work, we implemented the Ising
model using the number of fibers between each pair of brain regions as input. The output

of the Ising model simulations on a structural connectome was then compared with

Brain Connectivity

empirical functional connectivity data. A simpler 2-dimensional classical Ising model was
used as the baseline model for comparison purpose. Thermodynamic properties, such as
the magnetic susceptibility and the specific heat, illustrated a phase transition from an
ordered phase to a disordered phase at the critical temperature. Despite the differences
between the two models, the lattice Ising model and the Ising model implemented on a
structural connectome (the generalized Ising model) exhibited similar patterns of the
global properties. To study the behavior of the generalized Ising model around criticality,
calculation of the dimensionality and critical exponents was performed for the first time,
by introducing a new concept of distance based on structural connectivity. Same value
inside the fitting error was found for the dimensionality in both models suggesting similar

behavior of the models around criticality.
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l. Introduction

The relationship between the spontaneous activity of the brain and its structural fiber
distribution is a critical topic in neuroscience. This relationship will allow us to better
understand the emergence of complex but flexible dynamics (brain functions) in the brain
from its underlying structural network. The structure-function relationship is commonly
investigated using two main approaches. First, statistical methods directly compare resting
state functional connectivity patterns with the structure. Statistical comparisons lead to
important results indicating the presence of a significant correlation between the
anatomical fiber distribution and the functional connectivity patterns (Barttfeld et al, 2015,
Van Den et al., 2010, Li’egeois R et al., 2015). The other common approach to understand
the structure-function relationship of the brain is by using simple mathematical models

that could capture the complex dynamics of the brain.

There are several models which have been used to discuss the spontaneous behavior of
the brain, including the Neural mass model, the Kuramoto model, and the well-known 2-
dimentional (2D) classical Ising model. The Neural mass model and the Kuramoto model
have been successful in providing evidence for the existence of a connection between the
anatomical structure and the spontaneous fluctuations of the brain as captured by fMRI
(David et al., 2004, Honey et al., 2009, Acebro’n et al., 2005, Breakspear et al., 2010, Deco
et al., 2009).

The classical Ising model was developed by Ernest Ising (Brush, 1967) to explain the phase
transition to ferromagnetic behavior at a critical temperature. It has been used to
investigate brain dynamics by (Fraiman et al., 2009). The classical Ising model is a relatively
simple model with only one fitting parameter, the temperature of the thermal bath, in
which a lattice simulating the regions of a ferromagnet is immersed. Yet, by virtue of its
simplicity it has been able to capture the integration and segregation behavior of
spontaneous brain function (Fraiman et al., 2009) (for more details of the 2D classical Ising
model see APPENDIX A). Blood Oxygen Level Dependent (BOLD) signal is the signal fMRI
methods are sensitive to and are a convolved property of neuronal fluctuations in the
brain. It is modelled with the Ising model using binary spin states. BOLD signals greater

than a threshold will be represented by up spins and less than the threshold will be
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represented by down spins with the lattice sites counting the number of brain regions.

With this analogy, the 2D classical Ising model was first used by Fraiman to predict the
distribution of functional correlations in the brain. They found that the best prediction of
the distribution of correlations was obtained from the model at the critical temperature
while important deviations were observed for even small changes in temperature from
criticality. Successful results of these comparisons have led to further investigations of the

model to explain the structure-function relationship of the brain.

In a subsequent work, the 2D classical Ising model was generalized by Marinazzo et al.,
(Marinazzo et al., 2013) by implementing the model on the structural connectome, in
order to match each region of the brain with a corresponding lattice site. Criticality was
confirmed for the generalized model and an information transfer was found to be
maximum at the critical temperature as well. The generalized Ising model was further
studied by Stramaglia et al. by comparing correlation values and transfer entropy between
simulated and functional empirical data (Stramaglia et al., 2017). Furthermore, Deco et al.
studied an Ising model implemented on the structural connectome and compared with the
implementations of the model on artificially created connectomes with differnet coupling
strengths (Deco et al., 2012). They investigated the entropy of the systems as a function of
the coupling strength to conclude that the simulated system exhibits rich dynamics similar
to the empirical functional connectivity when the structure is integrated as a scale-free

network.

In this paper we compared the classical Ising model and the Ising model implemented on
the structural connectome with respect to the empirical data demonstrating that both
models exhibit similar functional patterns and global properties despite the intrinsic
differences. If both models are in the same universality class (same critical exponents),
then their similarity would not be surprising. To investigate the cause of their similarities,
the critical exponents (explained below as well as in APPENDIX B) of both models were
calculated and compared (Landau et al., 2014). If we know the critical exponents of one
system in a particular universality class, we can explain any other system in the same
universality class, whose microscopic causes could be totally different from the known

system. The critical exponents are said to explain the behavior of the system around the
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critical temperature. Greek letters, B, vy, a, n and v are used to represent the critical

exponents of magnetizations, susceptibility, specific heat, correlation function (Expert, P.
et al., 2011) and correlation length (Fraiman, D. et al., 2012) respectively. These critical
exponents together with the dimensionality d follow the scaling relations explained in

APPENDIX B.

Dimensionality, together with the other critical exponents, is fundamental to understand
the behavior of the system around criticality. Physiological changes of the brain, as for
example induced by sleep, could be infact explained by the model deviating from
criticality. Dimensionality of a system has been found to be highly relevant for the system
perfomance also in neural networks (Severino et al., 2016). In their paper, they have
concluded that different dynamics can be observed in neural networks with different

connectivity patterns coming from different dimensionalities.

For the classical Ising model the dimensionality of the system is given by the number of
dimensions of the lattice (d = 2 for a square lattice) and there is a well-defined relationship
between the number of nearest neighbors in the lattice and the dimensionality (number of
nearest neighbors = 2*dimensionality). However, for the generalized Ising model the
dimensionality of the system is not evident as for the classical case and in order to be

extracted a new concept of distance needed to be introduced.

The key components of the steps carried out are summarized in Fig. 1. The organization of
the paper is as follows. In the next section, we will introduce the methodology of
calculating and comparing properties of the empirical functional connectivity with the
ones generated from the numerical simulations of the classical Ising model and the
generalized Ising model. Then we will explain the procedure we followed to calculate the
critical exponents and the dimensionality of the models. Next, we will explain the main
findings of the work that was carried out, which will be followed by discussion and

conclusions.
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Il.  Materials and Methods
A. Acquisition & Preprocessing of Data
1. Subjects
A set of sixty-six healthy subjects, between 22 — 35 years old, were studied during
wakefulness. Informed consent to participate in the study was obtained from every

subject.

2. Ethics Statement
The Ethics Committee of the Washington University and the University of Minnesota

approved the study.

3. Acquisition & Preprocessing of Data
Structural and functional data were acquired at the Washington University - University of
Minnesota Consortium of the Human Connectome Project (WU-Minn HCP). Details about
the data acquisition and preprocessing can be found here (Glasser, Mathew F. et al.,2013,
Jenkinson, Mark, et al. , 2012, Fischl B. 2012, Jenkinson M et al., 2002, Glasser MF et al.,
2011, Van Essen DC et al.,, 2012, Andersson JL et al., 2003, Andersson JL et al., 2015,
Andersson JL et al., 2015). Parcellation of the data was performed, using FSL, Freesurfer
and MRTrix software with 84 individually labeled regions (list of the labels are presented in
APPENDIX C). Extraction of the structural connectivity matrix (J;) was performed using the

MRTrix software.

B. 2D Ising model and the Generalized Ising Model
1. Computer Simulations:
An instance of the 2D Ising model is built starting with a random spin configuration on a
square lattice of size L x L (= 9 x 9) which is in contact with a thermal bath of temperature
T. For comparison purposes, a square lattice Ising model with a 9 x 9 lattice size was
chosen, as it gives 81 spin sites (that is the closest number of sites to 84 we can acquire
using a square lattice). For the generalized Ising model, a 1 x 84 array of random spins was
used. Each spin can be in only one of two spin states (either up (+1) or down (-1)). The

energy of this spin configuration, in the absence of an external magnetic field is given by;

E=—=3N_1JijSiS (1
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where Jjis the coupling between i™ and j”’ region, s;and s;represent the spins of the i™ and

jth region respectively and N = L x L. A matrix representing the coupling J; for the 2D Ising
model has been created to encode nearest neighbor coupling with a coupling strength of
one (Fraiman et al., 2009). In contrast, another matrix representation of coupling J; for the
generalized Ising model has been created using the connectivity matrix which was built
from the Diffusion Tensor Image (DTI) acquisition. This matrix contains the number of fiber
tracts between each pair of region in the connectome which is being used to define the
coupling strength. For the simulations of the model we normalized the average structural
connectivity matrix (average over 66 subjects) such that the matrix elements will be

between 0 and 1.

A Metropolis Monte Carlo algorithm (Metropolis et al., 1953, Gould et al., 1988) was used
to simulate the system at each temperature. Metropolis Monte Carlo algorithm allows to
generate an equilibrium spin configuration starting from a random spin configuration for
each temperature (more details can be found in APPENDIX A). From the final output of the
simulations, the correlation between the time evolutions of spins for each temperature

was calculated using Eq. II,

<Si(t)x Sj(t)> - <Si(t)><5j(t)>

COT'T'l'j =

(1)

TGRS 95t

where s;and s;jstands for the spins of i™ and jth regions, o_’f}u) = <si(t)>-<si(i) >*and <. >

is for the average over time.

Using this procedure, the correlations were generated by each model as a function of
temperature. Afterwards, this procedure was repeated for both models to generate ten
sets of data for each, always starting with a random spin configuration. Generating ten
independent simulations further ensures that the Metropolis algorithm explores a variety
of initial conditions and therefore increases the (statistical) accuracy of the results.
MATLAB (https://www.mathworks.com/) was used for the computer simulations and

analysis whereas RStudio (https://www.rstudio.com/) was used to generate graphs.
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C. Analysis
1. Preliminary Analysis
Analysis was performed over the average of ten data sets for both models. The
thermodynamic properties were plotted as functions of temperature for the two models

to obtain the critical temperature (Fig. 2).

The critical temperature can be obtained by locating the temperature which maximizes the
magnetic susceptibility of the system (Eq. Il where y is the magnetic susceptibility, T is the

temperature and M is the magnetization) (Landau et al., 2014).
y=[<M?> - <M>7] ()

The empirical functional correlation matrix which is built by averaging the correlation
matrices across the 66 healthy subjects was compared with the simulated correlation
matrices (Fig. 3) for further analysis. Additionally, the distribution of the correlation for the

simulated data as well as for the empirical data was plotted in Fig. 4.

Next, the distance between the simulated correlation distributions and the empirical
correlation distribution was calculated as a function of temperature and presented in
APPENDIX D - |. The distance between the empirical and simulated correlation
distributions is quantified using the Kolmogrove-Smirnov test (KS test) statistic (Massey Jr
et al., 1951). To calculate the KS test statistic, empirical and the simulated correlations
were plotted as cumulative plots in the same graph. Next, the maximum distance between
these two plots was calculated. Temperatures which minimize this maximum distance
(Tmin) has been obtained for individual simulations. Distribution of T, and T. for the

generalized Ising model is presented in Fig. 5.

In order to calculate the global degree as a function of threshold, correlations were
separated into positive and negative correlations. Then the global degree was calculated
for the negative and positive thresholds separately for the 2D classical Ising model and the
generalized Ising model and plotted in Fig. 6 together with the global degree of the

empirical data (Rubinov et al., 2010). Taking the individual node degree into consideration,
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connectivity graphs are plotted for the generalized Ising model at four different

temperatures and been compared with the graph of the empirical data (Fig. 7)

2. Analyzing the behavior at the criticality using the critical exponents
The critical exponents and the dimensionality were calculated for the two models by
following the procedure below. First, the critical exponents related to magnetization,
susceptibility and specific heat were calculated by fitting Eq. 1- 5 (in APPENDIX B) to the

respective plots in Fig. 2. To find n and v, following procedure was used:

Correlation function: First, a set of distances for both models were defined using the
respective connectivity matrices. For the classical Ising model, the distances were the
integers from 1 to 8, since the initial configuration was a 9 x 9 2D lattice. However, for the
generalized Ising model the distance between two regions is defined as the reciprocal of
the normalized number of fibers between the two regions (dj = 1/J;). We binned the
continuous distances to create a set of discrete groups. Then the correlation values
between pairs at the same distance were averaged to get the average correlation as a
function of distance. This calculation was performed for each temperature (Fig. 8). By
fitting Eq. 8 (APPENDIX B) to the plot of correlation function versus the distance at the
critical temperature, n was calculated. By subsequently using Eq. 7 to fit the correlation
function at the critical temperature, a numerical value for the power of the denominator
(= d- 2+ n) was then obtained. Using this fitted value and the calculated n at T. the
dimensionality of the classical Ising model as well as the generalized Ising model was finally

extracted.

Correlation length: Correlation length at each temperature was calculated by fitting Eq. 6
(APPENDIX B) to the correlation function versus the distance at each temperature. The
correlation length was plotted as a function of temperature and fitted with Eq. 9 and 10

(APPENDIX B) to find v (Fig. 8).

lll.  Results
1. Preliminary Analysis
The mean values of critical, sub-critical and super critical temperatures over the ten

independent trials were obtained using the susceptibility plots in Fig. 2 and are reported in
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Table | together with their standard deviations. The critical temperature value of the 2D
Ising model agree with the critical temperature described in (Witthauer et al., 2007) for
the lattice size L = 9. In the generalized Ising model, the phase transition occurs at a lower
temperature than that of the classical Ising model. Correlations for four different
temperatures are presented in Fig. 3. At T.the spatial pattern of the correlations in the
generalized Ising model hold a similar spatial pattern to that of the empirical data.
Distributions of the correlations for the selected four temperatures are plotted in Fig. 4
along with the empirical data. For the classical Ising model correlation distributions
showed difference between the empirical distribution and the simulated one at criticality,
even if the critical temperature T, or the slightly different value T, gave a much better
prediction with respect to sub or supercritical behavior. For the generalized Ising model
the distribution of correlations at T. and Tmin and the distribution of correlations for the
empirical data were not signifantly different (p = 0.98) while the distributions at sub and

supercritical temperatures were quite distant from the empirical distribution.

According to Fig. 5, the variation of T, (and Tpin) is resulted due to the randomness of the
initial spin configuration in the simulations. To illustrate the inter-subject variance of T,
(and Tpin), distributions of T, (and Tmin) are presented in APENDIX D - (Il). A two sample t-
test was performed to compare the T, values with the T, values in individual simulations.
Results of the t-test together with Fig. 5 concluded that T,;, and T. are significantly
different for the generalized Ising model (p <0.001) but not significantly different for the
2D Ising model (with p = 0.4).

Graph Theoretical Analysis

In Fig. 6, the global degree of the graphs was plotted as a function of negative and positive
thresholds for both models. As observed in Fig. 4 there are no negative correlations at T.or
at Tnn for the classical Ising model. Therefore, in Fig. 6 the degree cannot be plotted for
the negative thresholds at T.and at T, for the classical Ising model. Fig. 7 represents the
functional connectivity graphs for the data obtained from the generalized Ising model
simulations at sub-critical, critical, super-critical temperatures and T, along with the

connectivity graph of the empirical data. In these graphs, each point represents a brain
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region. It is evident that the connectivity in the network grows as the temperature goes

from T < T.to T.and again reduced from T, to T > T,, and shows similar patterns for T, and

Tmin-

Analyzing the behavior at the criticality using the critical exponents

Fig. 8 represents the correlation function and the correlation length plotted for the two
models. These two plots were used to find the critical exponent n and the dimensionality
‘d’ of the models. The calculation of dimensionality for the classical Ising model confirmed
the expected value of 2 (since we chose the square lattice Ising model in two dimensions)
giving the value of 1.93 + 0.59. The dimensionality of the generalized Ising model was
calculated for the first time giving a value of 1.92 + 0.12 and proven equal to the classical
Ising model value inside the fitting error. All the other critical exponents are reported in

Table Il together with the dimensionality for both models.

V. Discussion
The square lattice Ising model has been used in neuroscience to study brain functionality.
Fraiman et al. showed that the distribution of correlations at T, in the 2D classical Ising
model has noticeable similarities to the distribution of correlations of the empirical data,
even in the absence of information from the structural architecture of the brain (Fraiman
et al., 2009). Their conclusion together with several other studies supported the
assumption of the presence of critical behavior in the brain network (Marinazzo et al.,

2013, Stramaglia et al., 2017, Deco et al., 2012).

In this paper, as the first step we compared simulations of a 2D Ising model with those of
the generalized Ising model by looking at the distibutions of correlation values. The fact
that for both models the mean of the correlation distribution values at the critical
temperature is larger than the mean of the correlation distribution at sub-critical or super-
critical temperatures is a well known prediction of the Ising model in the classical version
and was confirmed by our results for the generalized model. Correlation between the ith
and the jth regions can be calculated using Eq. (IV) (where rjj is the distance between region
iandj, & is the correlation length, d is the dimensionality and n is the critical exponent of

the correlation function), and is clearly shown from Fig. 8.
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exp(—-)
COT'Tij = 1”‘1‘—2""7 (|V)

At the critical temperature, because the correlation length (§) goes to infinity (in the
infinite lattice size limit), the correlation will have a power low decay with the distance. On
the contrary, at any other temperature, & will be finite and the correlation will have a
combined exponential and power low decay. Therefore, outside of criticality correlation
will drop faster with distance resulting in a lower average correlation value. For finite
lattice size the difference between the mean of the distribution at criticality and outside

criticality will be reduced with respect to the infinite lattice size limit.

In the generalized Ising model, the introduction of the coupling from the structural
connectivity of the brain provided a one to one relationship between the brain regions and
the lattice sites. Each lattice site was connected with every other site with a given weight
which was obtained from DTl as opposed to the 2D classical Ising model. One objective was
to investigate behavior at the critical temperature with respect to these changes in the
model. When the structure is introduced, we observed a shift in the critical temperature
from 2.5 to 1.4. An illustration of this change as a function of sparsity of the structural
connectivity matrix is presented in APPENDIX D — (lll). We can conclude that the critical
temperature depends not only on the size of the matrix but also on the sparsity of the

connectivity matrix.

The temperature which minimizes the distance between the distributions of correlation
(Tmin) was significantly different from T, for the generalized Ising model but not for the 2D
classical Ising model. Global degree plotted as a function of the temperature (APPENDIX D
— (IV)) was maximized at a temperature which is not different from T,,;,. This fact suggests
the usage of graph properties to extract T,,, of the Ising model, either in the classical or
generalized version as done by looking for the maximum of susceptibility. Fig. 9 represents
the possibility of finding a relationship between the graph properties and the
thermodynamic properties of the Ising model. As the theory implies, the specific heat and
the susceptibility measure the variation of energy and magnetization with temperature
respectively. This was captured by calculating the cumulative integral of the specific heat

and susceptibility of the generalized Ising model. Following the same procedure, the
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cumulative integral of the global degree was calculated, which resulted in the plot on the

right-hand corner in the top panel of Fig. 9. The new plotted quantity follows a similar
behavior as the energy with temperature and could be linked to a fundamental property of

graph theory.

Similar properties around criticality for both models justified the use of the same fitting
functions, even if we needed to introduce a concept of distance for the generalized version
in order to extract the correlation length. In fact as shown in Fig. 8 the behavior of the
correlation vs distance for the generalized Ising model is well fitted by the same function as

the classical model.

Having the same dimensionality can explain the observed similarities in global behavior of
the two Ising models around the critical temperature such as the correlation values and
global degree. Studying the behavior around criticality for complex systems like the Ising
model which shows a phase transition, could be extremely important and performed with
a similar strategy as the one followed in this paper by introducing an artificial concept of

distance.

As the critical exponents (in Table 1) are different for the two models, it cannot be
concluded that these models belong to the same universality class. The fact that the global
properties of the models still followed a similar pattern is due to the fact that our
calculated properties all depend on the correlation values which are controlled by the
dimensionality d (equal in the two models) and the critical exponent 1 (0.34 for classical

and 0.46 for generalized) (APPENDIX B, Eq. 6).

Our findings for the genarlized ising model could be of relevance to study for example the
brain function of patients who suffer severe brain injury with disorders of consciousness in
which usually both structural and functional connectivity are highly affected. Furthermore,
for future studies, it will be highly relevant to see how the properties of the generalized
Ising model change with respect to the size of the lattice. This would mean using different
parcellation schemes, different size of the system, which is contrary to the classical ising
model will also result in the change of the structural connectivity matrix (J;) that will

depend on the parcellation scheme used.
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V. Conclusion

Extending the 2D classical Ising model towards the generalized Ising model further permits
to fit the empirical functional connectivity patterns. The introduction of structural data
from the brain as an input into the Ising model gives the best fit to functional data at T,
which is significantly different from T.in the direction of the subcritical regime but not far
from criticality. Since the critical exponents of the models are different it cannot be
concluded that these two models belong to the same universality class. However,
similarities observed in the global properties between the two models can be explained by
the fact that they have the same dimensionality. Studying the behavior of the system
around criticality could be used to better understand changes in spontaneous brain
activity from the awake condition as observed in physiological states like sleep or as in

pharmacologically induced conditions like under anesthetics.
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TABLE Il. Critical exponents and the dimensionality of the 2D classical Ising model and the

generalized Ising model

Critical exponent 2D Classical Generalized
Ising model Ising model

o (Specific heat) 1.49 £ 0.02 0.81+0.01

B (Magnetization) 0.14+0.01 0.21+0.01

v (Susceptibility) 0.61+0.01 0.53+0.01

n (Correlation function) | 0.34 +0.01 0.46 +£0.01
v (Correlation length) 0.30+0.01 0.63+0.02
d (Dimensionality) 1.93+0.59 1.92+0.12
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FIG. 1. Summarized representation of the analysis carried out. We obtained the structural

and functional data separately from brain imaging techniques. Then, the structural
connectivity was used as the input of the generalized Ising model. Using this input, the
generalized Ising model was simulated for different temperatures and each time the

output was compared with the empirical functional data obtained from fMRI
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FIG. 2. Thermodynamic properties of the 2D classical Ising model with 9 x 9 lattice size and
the generalized Ising model as a function of temperature. Red dashed line indicates the
critical temperature and the red solid lines represents the plots after fitting the given

equations to calculate the critical exponents.
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FIG. 3. Correlation at four different temperatures for the classical Ising model and the

generalized Ising model with the correlation of the empirical data.
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FIG 7. Connectivity graphs for the generalized Ising model for four temperatures, and the
connectivity graph of the empirical network. The size of the nodes represents the degree

such that larger the size, higher the degree.
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FIG. 8. Correlation function versus distance and correlation length versus temperature for
the 2D classical Ising model and the generalized Ising model. Red solid line represents plots

after fitting the given equations (APPENDIX B). In the top panel, the dashed line represents
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FIG. 9. Energy, Specific Heat, Magnetization, Susceptibility, Degree and the cumulative

degree of (a) the generalized Ising model, (b) the 2D classical Ising model as a function of

temperature.
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APPENDIX

APPENDIX A: 2D CLASSICAL ISING MODEL

1
APPENDIX A: 2D Classical Ising Model
A detailed explanation of the 2D classical Ising model — with encrgy Efz) is given by Equation 2:
is given in this Online Resource. N
E(x)
The classical model was introduced by Wil P(z) =5 ¢ FaT 2)

helm Lenz in 192 he 2D Ising model (in the absence
of an external magnetic field) was solved by Onsager
in 1944 (Brush, 1967). It was introduced to explain
the interactions of magnetic spins lly. The
lattice

rathemat

physical system (a magnet) is represented 1
configuration in the Ising model. Each lattice site has a
spin 's” which could take only two possible values, either
up (+1) or down (—1) (Figure 1). Thus, it is a collection
of +1 and —1s representing the spins. This configura-
tion is kept in a thermal bath of temperature T. Inter-
actions hetween the spins are always influenced by this
temperature and allow the system to reach an equi-

librium eneray state while resulting in different equi-
librium spin configurations with different properties at
different temperatures.

Fig. 1 Representation of a 2D lattice arrangement. Each lat-
tice site has a spin, either up or down. The nearest neighbours
of the lat site in green are represented in red

The energy of this spin system at any state x in the
absence of an external magnetic field can be caleulated
Equation 1:

N
Bla)=-1 3 s 1)

ij=nn(i)

ent
the spins of the ¢ the
size of the lattice. For the caleulation of energy the
2D Ising model, only the nearest neighbour interactions
are considered together with equal coupling (I = 1).
The probability of finding the system in the state x

where J is the coupling constant, s; and s; rep
ith

where kg is the Boltzmann constant, T is the temper-
ature of the heat bath and Z is the partition function.
Equation 3 illustrates the partition function of the sys-
tem which deseribes the statistical properties of the spin
system in th wmmation

_E(»)

z=Ye ksl 3)
{=}

At equilibrium, thermodynamic properties such as

magnetization, magne

of the syst

8 Squations
vely where s; is the spin of the i'h
ation simply is an order parameter
state of the spin system, either an
ordered state or a disordered state. Magnetic suscepti-
bility is the derivative of magnetization which eaptures
the changes of magnetization. This is used to identify
the critical temperature of the spin system by noting
the temperature which maximizes the susceptibility (or
the temperature which gives the highest vari
magnetization), Specific heat tells us how much does
the energy of the spin system changes with changing
temperature.

tion of

)

(6)

When a 2D lattice co
are two extreme equilib
can hold, one for lower temperatures (sub-c
the other one for higher temperatures (super-cr
When the temperature is v low, all the spins pre-
fer to be aligned along the same rction, with very
large clusters of the same spin, either up or down (or-
dered) resulting in high magnetization even in the ah-
sence of an external magnetic field (Figure 2 (a)). In

iguration is considered, there

n configur

29
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the other end. when the temperature is very high. the
spins are a mixture of up spins as well as down spins
(dlisordered) without any order which will result in zero
mag ion (Figure 2 (¢)). In between these two ex-
tremes, there exists a critical temperature (T.) (Das
et al, 2014) where the tem exhibits transition from
ordered phase to the disordered phase (Figure 2 (b)),
As the figure illustrates, this temperature there is
mixture of ordered s well as disordered s
Additionally, the system acquires its maximnm
tibility or the maximum change in magnet
T.. Even a single spin flip can change the
tem (Chialvo, 2010), and the perturbation introduced
by & single spin flip can spread over the entire system
rapidly. Therefore, with different temperatures of the
heat bath. could exhibit completely differ-
ent properties (Brush, 1967) which depend only on the
temperature of the system.

Fig. 2 ion of the equilibrium spin .
for (a) T < To, (b) T = nd () T > T. for a two
dimensional lattice arrangement. Yellow color is for the up
spins (+1) and blue color is for the down spins (—1}

model,

lis algorithm involves the construction of a new state
based on the current state of the system L & trar

probability. It is used in the Ising model to find
the equilibrium energy state starting from a random
spin configuration for a constant temperature (Landan
+ 2014). This algorithm is used in the classi-
g model with the periodic boundary cond
Periodic boundary conditions were introduced to the

ms.
systern to restrain the finite size effects,

In the simplest way, spins of the Ising model ean be
considered as equival to the BOLD activ
brain with +1 for the activ
ty and —1 for the activity lower than the baseline
al Ising model exhibits long range
correlations at the eritical temperature, which explains
the chserved interactions of the spins that are spatially
distant from each other. This fact can be compared with
the functional integration ohserved in the brain. The

in the

ity higher than the baseline

e Metropo-

hetween the funetion:
nd segregation in order to perform
S; Sparns and Honey, 2006). As ob-

our of the brain, there are separate

ains a balang

gration
(Tononi et al, 10
served in the beha;

regions which are specialized to perform certai
tions, While functioning separately, these regions need
to exchange information with each other in order to
function as a complete system. This process is explained
as the funct integration and can be compared with
the long range eorrelations observed in the Ising model.
Thus the classical Ising model was chosen to model the
ascillations ohserved in BOLD signal for comparison.
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APPENDIX B: CRITICAL EXPONENTS AND SCALING RELATIONS

APPENDIX B: Critical exponents and scaling relations (Landan and
Binder, 2014)

0.1 Critical exponents

Critical exponents of Magetization, Susceptibility and
Speeific Heat was caleulated by fitting Eq. 1 -5 for
the respective plots. For Susceptibility and the Specific
Heat, since there are two seperate equations for fitting
the right hand side and the left hand side of the plot, we
obtained two eritical exponents using both equations.
Then the exponent that has the minimum error was
chosen,

0.1.1 Magnetization

M(T)y=n (1)
0.1.2 Susceptibility

- T.—
‘\J'rjf(r)=P\ [T (2)
Xrignt(T) = (3)
0.1.3 Specific Heat
eomtep(T) = Py [— In (4)
o) = B[ )

0.1.4 Correlation Function

In order to calenlate the correlation length (£) for dif-
ferent temperatures, Eq. 6 was fitted for the correlation
function vs. distance plot at each temperature. At the
eritieal temperature, the correlation length goes to in-
finity and Eq. 6 simplifies into Eq. 7. Furthermore, the
correlation function at the eritical temperature is said
to behave according to Eq. 8 at the critical temperature
(Witthaver and Di . 2007). Therefore the critical
exponent for the correlation function (r) was obtained
by fitting Eq. 8 for the correlation function vs. temper-
ature plot at the critical temperature. By plugging in

this value in the denominator of Eq. 7, we were able to
caleulate the dimensionality.

. cap(F") )
Gir) = pr=r (6)
1 -

GOAT) = 5y )
Gr)[atTy) = Py (1)~ (8)

0.1.5 Correlation Length

Correlation lengths which have been ealculated by fit-
ting Eq. 6 was plotted as a funetion of temperature. Eq.
9 and 10 was used to fit the above mentioned plot from
left hand side and the right hand side and v, the eritical
exponent of the correlation length was obtained.

Ciep(T) = Py

T'—TJ"’

Erignt(T) = (10)

0.2 Scaling relations

Cri
methods obey the sc
- 13

ated from the above mentioned
aling relations presented in Eq. 11

cal exponents

@-nv=n (1)
v

i[l}i»rffﬂ):'f (12)
2-vd=a (13)

Variables and constants in the equations
Py - Constant

T - Temperature

T, - Critical temperature

£ - Correlation length

» - Distance

d - Dimensionality
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Critical exponents:

3 - Magnetization

v - Susceptibility

« - Specific Heat

7 - Correlation Function
v - Correlation length
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Right hemishpere Left hemishpere
. 1. Thalamus-Proper 43. bankssts
2. Candate 44. caudalanterior
3. Putamen 45. caudalmiddlefrontal
4. Pallidum 16. cuneus
5. Hippocampus 47. entorhinal
6. Amygdala 48, fusiform
7. Acenmbens-area 49, inferiorparietal
8. hankssts 50. inferiortemporal
9. candalanteriorcingulate 51. isthmuscingulate
10. candalmiddlefrontal 52. lateraloccipital
11. cuneus 53. lateralorbitofrontal

A lingual
. medialorbitofrontal
5. middletemporal

. parahippocampal

. paracentral

. parsopercularis

. inferiorparietal

5. inferiortemporal
16. isthim
7. lateraloceipital

cingulate

. lateralorbitofrontal . parsorbitalis
. lingual il. parstriangularis
. medialorbitofrontal i2. pericalcarine

. middletemporal
parahippocampal

3. posteentral
i1. posteriorcingulate

paracentral G5. precentral
. parsopercularis G6. precunens
5. parsorbitalis G7. rostralanteriorcingulate
5. parstriangularis G8. rostralmiddlefrontal
pericalcarine 69. superiorfrontal
. postcentral 70. superiorparietal

posteriorcingulate

71. superiortemporal
ntral 72. supramarginal
Kt

. preced
z . precuneus 3. frontalpole
= rostralanteriorcingulate 74. temporalpole
g rostralmiddlefrontal 75, transversetemporal
g superiorfrontal 76. insula
c . superiorparietal 77. Cerebellum-Cortex
8 superiortemporal 78. Thalamus-Proper
K= . supramarginal 79. Caudate
© . frontalpole 80. Putamen
o 39. temporalpole 81, Pallidumn

40. transversetemporal 82. Hippocampus

41, insula 83. Amygdala

12. Cerebellum-Cortex 84. Accumbens-area
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APPENDIX D: DISTANCE CALCULATIONS, FURTHER STUDY OF THE DIFFERENCE IN T. AND

ADDITIONAL FIGURES

APPENDIX D

(I): Distance Calculations

Distance between the  correlation
distributions

To compare the correlation distributions, the
distance between the correlation distributions
were calculated using the Kolmogrov-
Smirnov test (Young, 1977). The temperature
(T, which minimizes this distance was
obtained for the ten realizations separately
and compared with T, using a two-sample (-
test (t-test results are discussed in the
manuscript).

20 Clapaical taing mode! Gasalized tring model

[Ia—

Fig. 1 Distance between the correlation
distributions as a function of temperature for
the 2D classical Ising model and the
generalized Ising mode. Red vertical line
corresponds to the critical temperature T,
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(II): Inter-subject variance of T, and T,

The work presented in the paper was
performed using the average connectivity
over 66 subjects. Variation of the critical
temperature and T, was due to simulating
the 2D classical Ising model and the
generalized Ising model ten times using the
same average conneclivity. However, we
simulated the generalized Ising model using
66 different structural connectivity maltrices
and the figure below illustrates how T, and
T, are distributed among the subjects.

Distribution of T, and T,,,, for 66 subjects

dstribution for e

711N

Temperature

Fig. 2 Histograms of T, and T, ;, together with
the fitted distributions for the generalized
Ising model for 66 subjects
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(I1I): Further study of the difference in T,

In order to investigate the observed
difference of T, for the generalized Ising
model and the 2D classical Ising model we
generated different connectivity matrices by
gradually changing the sparsity of the
matrices. Fig. 3 represents the initial

structural connectivity which is been used for

the generalized Ising model simulations and
then how an intermediate  structural
connectivity as  well as the structural
connectivity of the 2D classical Ising model.

Fig. 3 Structural connectivity matrix of the
generalized Ising model, an intermediate
structural  connectivity and the structural
connectivity used for the 2D classical Ising
model

Starting with the structural connectivity used
in the generalized Ising model simulations
and by changing/removing connections
randomly preserving the randomness, the
structural — connectivity  was  gradually
transformed 1o that of the 2D Ising model.
The connectivity matrices build during this
transformation were used in the generalized
Ising model simulations and the critical
temperature  was  obtained from each
simulation. In Fig. 4, critical temperature is
plotted as a function of the sparsity of the
connectivity matrix. Transition is from the

generalized Ising model with a sparsity of

0.06 to the 2D classical Ising model with a
sparsity of 0.95. From this figure, it can be
seen that the sparsity of the connectivity
matrix could explain the difference observed

in the critical temperatures from the
generalized Ising model and the 2D classical
Ising model. However, the variations
observed in the eritical temperature in this
figure could be due to the random procedure
followed in order to get different connectivity
matrices during the transition.

Fig. 4 Critical temperature versus sparsity of
the connectivity matrices. Point A represents
the sparsity of the generalized Ising model
and point B the 2D classical Ising model
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(IV): Global degree as a function of
temperature

In graph theory, degree of a node is said to be
the number of connection that node has. For
a graph, the global degree gives the average
degree of the whole network by taking the
average over the number of nodes the
network has. We have calculated the global
degree for using the results of the simulations
of 2D classical Ising model and the
generalized Ising model as a function of
temperature. From this plot, it is evident that
the degree of the generalized Ising model
maximizes at a temperature different from the
critical temperature but similar to T ;.

2D Classical Ising model Generalized Ising model
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Fig. 5 Global degree as a function of
temperature for the 2D classical Ising model
and the Generalized Ising model. Black
horizontal line represents the global degree
for the empirical functional connectivity. Red
vertical line represents the critical
temperature for each case
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