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Abstract 

Background 

Though non-invasive EEG-based Brain Computer Interfaces (BCI) have been researched 
extensively over the last two decades, most designs require control of spatial attention and/or 
gaze on the part of the user. 

Methods 

In healthy adults, we compared the offline performance of a space-independent P300-based 
BCI for spelling words using Rapid Serial Visual Presentation (RSVP), to the well-known 
space-dependent Matrix P300 speller. 

Results 

EEG classifiability with the RSVP speller was as good as with the Matrix speller. While the 
Matrix speller’s performance was significantly reliant on early, gaze-dependent Visual 
Evoked Potentials (VEPs), the RSVP speller depended only on the space-independent P300b. 



However, there was a cost to true spatial independence: the RSVP speller was less efficient in 
terms of spelling speed. 

Conclusions 

The advantage of space independence in the RSVP speller was concomitant with a marked 
reduction in spelling efficiency. Nevertheless, with key improvements to the RSVP design, 
truly space-independent BCIs could approach efficiencies on par with the Matrix speller. 
With sufficiently high letter spelling rates fused with predictive language modelling, they 
would be viable for potential applications with patients unable to direct overt visual gaze or 
covert attentional focus. 

Keywords 

RSVP Speller BCI, Matrix P300 Speller BCI, Space-independence, Gaze-independence, 
Rapid Serial Visual Presentation 

Background 

There are now a number of relatively mature methods for interfacing the brain with modern 
computer systems and devices by interpreting electrical brain activity in real-time, most 
commonly using non-invasive electroencephalography (EEG). In particular, EEG-based 
Brain Computer Interfaces (BCIs) have been explored extensively over the last two decades, 
based on detectable changes observed at the scalp in response to motor imagery Event-
Related Desynchronisation (ERD) [1-3], Steady State Visual Evoked Potentials (SSVEPs) 
[4], Slow Cortical Potentials (SCPs) [5-7] and the P300 Event Related Potential (ERP) [8]. 
These techniques variously assume motor, neural and cognitive capacities of the user. For 
example, SCP-based BCIs rely on feedback that teaches users to modulate their own brain 
rhythms to produce slow (low-frequency) EEG changes that can be detected in real-time. 
Users of typical SSVEP-based approaches, on the other hand, need to shift their gaze to one 
amongst many spatially separate flickering patches, and select by holding gaze upon one such 
patch. Users of the well-studied P300-based letter matrix BCI select letters in a 2-D grid by 
fixating on them and counting flashes [9]. This raises the key issue of spatial dependence in 
BCI designs; that is, what cognitive and residual motor capacities does use of a particular 
BCI method require [10,11]? Most importantly, the extent of a method’s dependence on such 
capacities governs its domain of applicability, since the degree of a user’s disability will rule 
out certain approaches. For example, a patient without control of gaze (for example, patients 
in a completely locked-in state) will not be able to use an SSVEP system employing spatially 
offset patches. 

Accordingly, there has been much recent interest in BCIs that are completely independent of 
eye gaze and more specifically, whether such independent BCIs can achieve bit rates that 
make them feasible. However, there are different levels at which independence can be 
considered. This is because, even if patients are unable to shift overt visual attention (i.e. eye 
gaze), they might, even with a fixed gaze, be able to spatially shift their spotlight of attention 
within the visual field, through so called covert attention. Indeed, a number of psychophysics 
experiments on visual attention rely upon this capacity, e.g. attentional capture [12] or the 
Posner task [13]. In addition, selective brain damage to candidate visual attention areas, such 
as the Superior Colliculus [14], Pulvinar Nucleus of the thalamus [15] or the Temporo-



Parietal Junction [16] could result in a variety of hybrid deficits crossing the spectrum of 
covert and overt visual attention, e.g. Neglect patients exhibit intact vision, but typically 
impaired attention deployment specifically to the left visual field [17]. Toward applications 
with such patient groups, researchers have recently investigated BCI designs that are gaze-
independent. These designs rely on the user’s ability to shift covert (rather than overt) 
attention in visual space, and detect the presence of consequent P300 ERPs [18-22], motion 
VEPs [23,24] or changes in alpha band power [25]. 

However, there may exist patients with deficits that manifest as an inability to spatially shift 
and hold either overt or covert attention, but spare vision at fixation. In addition, even if 
holding covert attention at a non-foveal location might be possible for some patients, it is not 
clear to what extent this would induce visual fatigue detrimental to usability. Thus, it is 
interesting to consider BCIs that go beyond gaze independence, and are completely 
independent of spatial shifts in attention. That is, could a practical BCI be developed in which 
all stimuli are presented exactly at foveal fixation? 

An SSVEP-based method that would seem indeed to be fully space-independent is the 
SSVEP interface proposed by Allison [26], which presents overlaid horizontal and vertical 
gratings flickering at distinct frequencies. The user then endeavours to perceptually 
foreground the desired grating, generating a corresponding SSVEP signature and providing a 
binary communication channel. The approach though, only realised one bit per minute or less 
in communication throughput (significantly less than the space-dependent alternative it is 
compared with in Allison [26]). This then raises the question of whether a wholly space-
independent BCI could be devised with a bit rate above one per minute, and also of how that 
rate would compare to those of existing space dependent BCIs. In other words, what is the 
cost of requiring space independence? These are the questions we explore here. 

More specifically, we will consider a particular method for realising a space-independent 
BCI, viz. presenting all stimuli at fixation (with each stimulus rapidly replacing its 
predecessor) in, so called, Rapid Serial Visual Presentation (RSVP), and detecting user 
selections via the P300 ERP. Users “search” an RSVP stream such that the vast majority of 
non-salient items remain sub-threshold, while most of the salient items “breakthrough” into 
conscious awareness. It is this breakthrough that we detect as the P300. Empirical 
investigations have demonstrated that this search can be based on both intrinsic salience, e.g. 
a threatening word when searching for job words [27], and (explicit) volitionally-prescribed 
task set [28,29]. The latter capability is exploited in the RSVP BCI. For example, at a 
particular moment, the BCI user might be searching a stream of letters for a “K”, which 
becomes the task set [30]. Demonstrated that ALS patients could use a simple space-
independent BCI with 4 serially presented choices by generating P300s. More recently, BCI 
designs have exploited this idea to demonstrate the viability of fully-fledged RSVP spellers 
[31,32] to perform online classification of P300s generated by RSVP [33]. Extending from 
this work [34], successfully tested an online RSVP BCI coupled with predictive language 
modelling with a Locked-in Syndrome (LIS) patient. The ‘Center Speller’ proposed by [19] 
further optimises the design of space-independent spellers, by employing a two-level 
procedure to first select a letter group presented in a circle around fixation, and then select a 
letter within that group. 

These developments bode well for practical applications of space-independent spellers. 
However, in choosing a BCI design for a particular patient, it is worth considering the trade-
offs inherent in opting for true spatial independence (see [35] for a comprehensive review of 



BCIs from this perspective). Toward informing this choice, our objective in this article is to 
comparatively assess the RSVP and Matrix spellers in an offline setting. These two designs 
effectively lie at either end of a potential spectrum of space-independence within which gaze-
independent BCIs represent intermediate levels. In particular, we are interested in how key 
differences in the target frequency and stimulus layout in these spellers feed into the time 
course of consequent EEG dynamics and classifiable information therein. To make a fair and 
general sable comparison, we employ ‘plain vanilla’, standard instantiations of the spellers, 
while keeping all other experimental parameters the same. We will show that the RSVP 
design performs considerably better than the SSVEP-based overlaid gratings design [26], and 
has an accuracy on par with the Matrix speller [9]. Further, we will demonstrate that in 
sacrificing space, the RSVP approach in its basic form has lower throughput, but at the same 
time is less dependent on space-dependent ERPs for its performance. In doing so, we provide 
a current assessment of the cost of space-independence in P300-based BCI spellers. 

Methods 

Participants 

The study was approved by the ethics committee of the Faculty of Sciences at the University 
of Kent. It included eleven participants (five female, six male),all of whom were students at 
the University of Kent and ranged in age from 19–26.All participants were right-handed, free 
from neurological disorders, and had normal or corrected-to-normal vision. They provided 
written consent and were paid for their participation. 

Stimulus presentation 

Participants were asked to spell words by counting occurrences of the constituent letters. 
Alphabet stimuli were presented on a 20” LCD screen with a refresh rate of 60Hz and a 
resolution of 1280x1024, placed at a distance of 60cm from the participant. Stimuli were 
presented in uppercase white colour on dark grey background, and subtended approximately 
2.5 degrees of visual angle. 

Stimuli 

Participants were presented six 5-letter English words (‘RIGHT’, ‘WORLD’, ‘BLACK’, 
‘QUEST’, ‘FLAME’ and ‘HEAVY’) in two modes of presentation, RSVP and Matrix, 
making up a total of twelve words they were asked to spell. The words were chosen so as to 
have equal lengths, and to ensure that all letters of the alphabet were proportionally 
represented. The order and mode in which these words were presented was randomised to 
prevent any unintended performance difference between the two modes. Before presenting 
any of the words, participants undertook a practice session, in which the word ‘HI’ was 
presented once in each mode. Data from the practice session were excluded from any 
analysis. 

RSVP mode 

Each word comprised five blocks (one per letter), with successive letters being designated as 
target in each block. Within each block, there were a number of stimulus repetitions, varying 
randomly between 8 and 12. This randomisation ensured that there was a behavioural 



counting task required of participants (see below). Each repetition consisted of an RSVP 
stream of 25 uppercase English letters flashed in random order and without repetition at the 
centre of visual fixation (the letter X was excluded because it was already used as a fixation 
cross before the beginning of the stream). The target letter was presented exactly once in each 
repetition. The Stimulus Onset Asynchrony (SOA) for each letter was 166ms, with an on time 
of 133ms and off time of 33ms. 

Matrix mode 

The overall structure of the Matrix mode was the same as RSVP, with blocks of letters 
making up a word. The main change was that instead of presenting letters in RSVP, we 
employed the well-known 2-D speller matrix originally proposed by Farwell and Donchin 
[9]. Here, participants were shown a 5 × 5 matrix of the same 25 letters as in RSVP. A 
repetition was defined as the successive flashing of all 5 rows in random order, followed by 
all 5 columns in random order. As with RSVP, each flash lasted 133ms, and was followed by 
an off time of 33ms. This resulted in a key duration difference between the RSVP and Matrix 
modes: while a single repetition in RSVP consisted of 25 letter presentations lasting 4.15s (= 
25 × 166ms), an equivalent repetition in Matrix lasted 1.66s (= 10 × 166ms). 

Experimental task 

In both presentation modes, there were no pauses between repetitions, but there were pauses 
after each letter block. At the beginning of each word, participants were asked to count the 
number of times they saw each target letter being presented or flashed (depending on the 
mode). Since participants were told that they would be asked to report the number of targets 
they counted, the randomisation of the number of repetitions in a block allowed us to 
behaviourally measure whether they attended equally well in both modes. 

In RSVP mode, participants were asked to focus their gaze and attend to the entire RSVP 
stream, while in Matrix mode they were instructed to focus their gaze and attention only on 
the target letter located within the matrix. These instructions were followed by the current 
word being displayed at the top of the screen. After 2s, the target letter to be counted was 
highlighted in red. Alongside, either a fixation cross (‘X’; RSVP mode) or the spelling matrix 
(in light grey colour; Matrix mode) was presented. 5s following this, presentation of letters 
began, either in RSVP or by flashing rows and columns of the matrix (see Figure 1). At the 
end of each block, participants were presented with a list of numbers between 8 and 12 in 
random order, followed by a ‘None of Above’ option. They were instructed to use only the 
up, down and enter keys on a standard UK keyboard to select an option in an unspeeded 
fashion. Once they had done so, the next letter in the current word was highlighted as the 
target letter and the next block began. Participants were requested to avoid eye blinks or any 
body movements during a letter block. They were permitted to blink and relax at the end of 
each block. 

Figure 1 Example of stimulus presentation in RSVP (left) and Matrix (right). In both 
modes, 2nd letter ‘O’ (the target letter) of the word ‘WORLD’ is being spelt, and is 
highlighted in red. In RSVP mode, letters were presented in rapid succession at central 
fixation. Participants counted occurrences of the target in the sequence. In Matrix mode, rows 
and then columns of the letter display were rapidly flashed on and off. Participants counted 
the number of times the target was flashed. 



EEG setup collection 

Electroencephalographic data was recorded from 7 scalp electrodes (Fz , Cz , Pz , P3, P4, O1 , 
O2) within the standard 10–20 system and the 2 earlobes (A1 and A2) using a Brain Products 
QuickAmp recorder (Brain Products, Munich, Germany). The 7 scalp electrodes were chosen 
based on a previous study [36], which showed that a similar montage (Fz , Cz , Pz , Oz , PO7 , 
PO8) produced the best P300b classification performance. We chose P3, P4, O1 and O2 instead 
of PO7, PO8 and Oz as we were additionally interested in recording bilateral occipital steady-
state responses to RSVP and Matrix mode stimuli. The left mastoid was set to be the ground 
electrode. The sampling rate was 1000Hz, and the data were average referenced and bandpass 
filtered online during recording, between 0.3-85Hz. Electrooculograms (EOG) were recorded 
from the left and right eyes using two bipolar horizontal and vertical EOG electrodes. 
Impedances were always below 7kOhm (2.27kOhm on average). 

Pre-processing 

Continuous EEG data from each participant was first down sampled to 250Hz and then low-
pass filtered at 40Hz. Individual epochs were then extracted by segmenting the data between 
-200ms and 800ms relative to the time of each letter presentation. Linear trends were 
removed from each epoch and they were adjusted to have an average of zero baseline activity 
between −200 and 0ms. Approximately 7500 epochs were generated in RSVP mode (25 
letters x ~10 repetitions x 5 letters x 6 words) including 300 target epochs. Similarly, there 
were around 3000 epochs (10 flashes x ~10 repetitions x 5 letters x 6 words) in Matrix mode, 
including 600 target epochs. Artefactual epochs containing peak-to-peak variation greater 
than 100µV in EOG or EEG channels were excluded from epoch-level classification analysis. 
The epochs were finally re-referenced to the linked mastoid electrodes, which, along with the 
EOG electrodes, were then removed from the data. 

In order to make a fair comparison between the two modes, we re-combined epochs in the 
Matrix mode, so as to make each epoch therein equivalent to an epoch in RSVP mode. 
Specifically, we took the 10 epochs in a Matrix mode repetition and combined each one of 
the 5 epochs corresponding to a row flash with each of the 5 corresponding to a column flash, 
by averaging every such pair. Each of these 25 new Matrix mode ‘pair-average’ epochs thus 
generated was the same length as RSVP mode epochs. Furthermore, of these 25, only the one 
averaging over the two epochs corresponding to the target row and column flash was marked 
as the new target epoch, while the remaining 24 were marked as non-target epochs. 
Importantly, this pair-averaging ensured that, in either mode, a roughly equal number of 
target and non-target epochs were available for classification analyses, and that performance 
estimates could be validly compared. Furthermore, each of these new pair-average epochs 
could be considered to be ‘informationally equivalent’ to their RSVP mode counterparts, as 
data from two flashes in each repetition (one row and one column) are required to uniquely 
detect the selection of a letter in Matrix mode. 

To generate features for the classification analyses, data was first downsampled to 25Hz. 
Then the 20 samples between 0-800ms (or 300-600ms in follow-up analysis) from the 7 scalp 
channels in each epoch were concatenated to form one ‘observation’ of the feature set, 
consisting of 140 features. Finally, feature vectors were converted to normalized Z-scores by 
subtracting out the feature-wise means and then dividing by the respective standard 
deviations. 



Epoch-level classification 

Stepwise linear discriminant analysis (SWLDA; Draper and Smith [37]) and Receiver 
Operating Characteristic (ROC) analysis was employed to estimate the optimal 
discriminability of targets from non-targets based on the single-trial P300 evoked in the two 
presentation modes. SWLDA has been shown to work well in EEG classification, providing 
an effective trade-off between complexity and speed [38,39]. 

In order to assess the classifier’s generalisability, we used 10-fold cross validation to 
calculate accuracy. Specifically, during each fold, a different 10% of target and 10% of non-
target epochs were excluded for testing. Then a SWLDA classification algorithm with a 
feature entrance tolerance of 0.1 and exit tolerance of 0.15 [38] was trained on the remaining 
target and non-target epochs. The algorithm returned a coefficient weight and p-value for 
each feature, indicating its efficacy as a predictor. These weights were sorted by their p-
values, and the 60 (or fewer) best features, i.e.,with the lowest p-values,which were also 
included in the regression model generated by SWLDA, were then selected. The weights of 
these best features were then used to calculate classification estimates of the same training 
epochs. ROC analysis of these estimates was used to calculate ROC curves and the optimal 
signal detection threshold (or ‘criterion’) that maximised the difference between the number 
of true and false positives. This key step improved overall classification accuracies by 
correcting for the classifier’s detection bias, due to the significant difference in the number of 
epochs of each class included for training. Next, the 60 classifier weights were used to 
calculate classification estimates of the previously excluded test epochs. The threshold was 
then applied to these estimates to decide classification outcomes of the test epochs, and 
accuracy for the fold. This entire procedure was repeated 10 times, by excluding a different 
10% of epochs each time. Overall cross-validated accuracy, threshold and areas under the 
ROC curves were estimated as averages of the values calculated in each fold. 

Letter-level classification 

To simulate and compare performance of the two modes in an online BCI setting, we 
calculated the average number of letters correctly identified in each presentation mode using 
a 50:50 train-test procedure. All epochs, including artefactual ones excluded above, were 
considered for this analysis, to generate a realistic estimate of online performance. For each 
participant, a SWLDA classifier was trained on epochs from the first three words in each 
mode, and tested with epochs from the last three words. For each letter block in the tested 
words, classification estimates for each instance of the 25 letters presented/flashed were 
separately averaged across the first 8 repetitions making up the block (as all letter blocks had 
at least 8 repetitions). The letter that got the highest average estimate in a block was 
considered to be the most likely target letter, and marked as identified correctly if it matched 
the actual letter in the word the participant had been asked to spell. With this procedure, we 
estimated the letter detection accuracy and ITR in each presentation mode. Information 
Transfer Rate (ITR) or bitrate, in bits/minute, was calculated from B, the average number of 
bits transmitted per block [40,41], using the equations below. 

2 2 2

1
log log (1 ) log

1

P
B N P P P

N

−= + + −
−

  
 

B
ITR

T
=   

 



where T is the average duration of a letter block in minutes (0.69 and 0.28 minutes in RSVP 
and Matrix, respectively), N is the number of possible targets (25 in both modes) and P is the 
probability of accurate letter detection. 

Statistical comparisons between conditions of interest were performed using paired t-tests 
that accounted for potentially unequal variances. The t-value and p-value calculated for each 
comparison are reported inline with the results below. 

Results 

Behaviour 

We compared the accuracy with which participants were able to correctly count occurrences 
of target letters amongst non-targets in the RSVP and Matrix modes. More specifically, for 
each letter block, we calculated the absolute difference between the number of times the 
target letter was presented/flashed and the number of times it was reported as seen. These 
differences were then averaged separately by subject and mode. Participants saw an average 
of 86.02% (s.d. = 6.76) and 88.58% (s.d. = 10.57) of targets in RSVP and Matrix modes, 
respectively. This difference was not significant in a paired t-test (t(1,10) = 0.66, p = 0.52), 
i.e. participants saw/missed roughly the same proportion of targets in both modes. Hence we 
concluded that there was no systematic difference in behavioural performance between RSVP 
and Matrix modes across the participant group. 

Event related potentials 

The ERP grand averages at each scalp electrode for targets and non-targets in RSVP and 
Matrix modes are shown in Figures 2 and 3, respectively. In RSVP mode, targets evoke an 
early frontal response around 250ms, followed by a relatively large, distinct parietal P300b, 
peaking at 428ms. In Matrix mode, targets evoked a rather different ERP pattern, similar to 
those found by [42]: early Visual Evoked Potentials (VEP) with a negative going peak at 
around 170ms, followed later by a relatively earlier and smaller P300b peaking at 352ms. 
Note that this Matrix mode ERP was generated by ‘pair-averaging’ epochs, one for the row 
flash, and one for the column flash (see the Methods section for details). 

Figure 2 ERPs evoked by targets (left) and non-targets (right) in RSVP mode. Targets 
evoke an early frontal response at 252ms, followed by a relatively large, distinct parietal 
P300b, peaking at 428ms. 

Figure 3 ERPs evoked by targets (left) and non-targets (right) in Matrix mode. Targets 
generate an early Visual Evoked Potential (VEP) with a negative going peak at 170ms, 
followed later by a relatively early and small P300b peaking at 352ms. These ERPs were 
generated by ‘pair-averaging’ epochs, one for the row flash, and one for the column flash. 

The observed differences in the ERPs evoked by targets in RSVP and Matrix can be ascribed 
to key differences in the presentation modes. Users monitored the RSVP stream for a briefly 
presented target letter. Stimuli in the centrally presented RSVP sequence set up a strong 
steady-state response (Figure 2, right), which was temporarily interrupted by the relatively 
larger P300b evoked by targets (Figure 2, left). On the other hand, participants shifted their 
gaze to targets that were always visible in the Matrix spellerto detect a change only in 



luminosity, explaining the pronounced early VEP [42] peaking around 200ms (Figure 3, 
left).Further, the P300b obtained was smaller in Matrix, possibly because target events were 
more frequent in Matrix (2 flashes out of every 10) than in RSVP (1 presentation out of every 
25). However, it should be noted that the effect of stimulus frequency on RSVP P300b ERPs 
is yet to be fully characterised in the literature. Of course, there was a cost attached to the 
more novel targets and larger and hence more discriminable P300b in RSVP mode: a single 
repetition took 2.5 times longer, adversely affecting the maximum rate at which letters could 
be spelt. Next, we investigate how these countervailing influences affect EEG classification 
and spelling rates. 

Epoch-level EEG classification 

The mean and standard error (across subjects) of the 10-fold cross-validated classification 
accuracy of individual epochs in RSVP and Matrix modes are shown in Figure 4. Also 
plotted alongside are the corresponding Areas Under the ROC Curves (AUC). The individual 
values for each participant are listed in Tables 1 and 2. The corresponding ROC curves are 
shown in Figure 5 (top). Note that classification in Matrix mode was performed on ‘pair-
averaged’ epochs, which ensured that equal numbers of epochswere included for training and 
testing in both spelling modes (see the Methods section for details). 

Figure 4 Epoch classification accuracy (left) and AUC scores (right) in RSVP and 
Matrix modes. Figure shows mean and standard error of 10-fold cross-validated epoch 
classification accuracies and AUC scores. These were calculated by including features within 
either 0-800ms, 0-300ms, or 300-600ms of each epoch. 

Table 1 Individual classification accuracies 
Participant  RSVP Matrix  

0-800 0-300 300-600 0-800 0-300 300-600 
1 75.9 55.9 74.0 84.4 81.7 74.7 
2 76.9 62.7 73.8 83.3 78.2 76.3 
3 75.9 60.3 73.4 85.2 81.9 73.2 
4 81.7 69.7 73.2 83.4 77.9 78.9 
5 84.0 71.6 78.3 87.5 79.9 79.0 
6 80.0 60.0 76.8 72.2 76.8 67.4 
7 86.0 75.2 83.4 89.7 87.5 81.5 
8 85.3 70.8 82.9 87.2 80.0 73.2 
9 80.4 53.8 71.5 81.5 73.8 75.1 
10 86.9 65.4 83.8 85.5 82.2 75.7 
11 84.3 74.2 82.1 84.3 79.3 73.9 
Table lists 10-fold cross-validated epoch classification accuracies for each participant in RSVP and Matrix 
modes, calculated by including features within either 0-800ms, 0-300ms or 300-600ms of each epoch. 



Table 2 Individual AUCs  
Participant  RSVP Matrix  

0-800 0-300 300-600 0-800 0-300 300-600 
1 0.83 0.64 0.79 0.93 0.91 0.83 
2 0.76 0.64 0.71 0.93 0.87 0.85 
3 0.84 0.65 0.79 0.93 0.91 0.85 
4 0.85 0.71 0.76 0.92 0.88 0.86 
5 0.87 0.77 0.84 0.95 0.89 0.88 
6 0.87 0.66 0.82 0.84 0.83 0.74 
7 0.92 0.81 0.85 0.97 0.95 0.91 
8 0.91 0.73 0.87 0.95 0.91 0.83 
9 0.86 0.55 0.81 0.92 0.84 0.84 
10 0.93 0.66 0.89 0.94 0.92 0.84 
11 0.89 0.79 0.87 0.94 0.89 0.83 
Table lists areas under the ROC curve averaged across 10 cross-validation runs for each participant in RSVP 
and matrix modes, calculated by including features within either 0-800ms, 0-300ms or 300-600ms of each 
epoch. 

Figure 5 ROC curves in RSVP (left) and Matrix (right) modes. Figure depicts subject-
wise Receiver Operating Characteristic (ROC) curves for each participant and each cross-
validation run, in RSVP and Matrix modes. Curves are coloured by participant, and were 
calculated by including features within either 0-800ms, 0-300ms, or 300-600ms of each 
epoch. 

The first key finding was that a comparison of classification accuracy when considering all 
features within the 0-800ms time window revealed no significant difference between RSVP 
and Matrix modes (t(1,10) = 1.69, p = 0.12): mean cross-validated accuracies were 81.57% 
(s.d. = 4.07) and 84.01% (s.d. = 4.54) in RSVP and Matrix, respectively (Figure 4, left). 
However, AUC scores were significantly higher in Matrix mode (mean = 0.93; s.d. = 0.03) 
than RSVP (mean = 0.87; s.d. = 0.05): t(1,10) = 3.99, p = 0.003 (Figure 4, right). This 
difference highlighted the improved discriminability of signal to noise in Matrix epochs, due 
in part to pair-averaging of epochs in this mode. 

In order to measure the differential extents to which early and late ERP components, in 
particular VEPs and the P300b, affected classification, we repeated the above analysis, only 
considering features within either the 0-300ms or the 300-600ms time windows. We first 
focus on the results within the 0-300ms VEP window. As shown in Figure 4 (left), 
classification accuracies reduced in both modes. But RSVP mode accuracies (mean = 
65.42%, s.d. = 7.40) were now significantly lower than Matrix (mean = 79.92%, s.d. = 3.53): 
t(1,10) = 5.86, p< 0.001. Further, this reduction in accuracy was significantly greater in 
RSVP than in Matrix: t(1,10) = 6.03, p < 0.001. A similar pattern was observed in the AUC 
scores with features within 0-300ms (Figure 4, right; also see ROC curves in Figure 5, 
middle): mean AUC went down to 0.69 (s.d. = 0.08) in RSVP, but only to 0.89 (s.d. = 0.04) 
in Matrix, resulting in a large significant difference: t(1,10) = 7.66, p < 0.001. As with the 
classification accuracy, this decrease in AUC scores was significantly larger in RSVP than 
Matrix: t(1,10) = 6.3, p < 0.001.This pattern of results is convergent with previous reports of 
the major influence of gaze-dependent early VEPs in EEG classifiability when using the 
Matrix P300 BCI [42]. As our findings show, the EEG responses in the RSVP speller carried 
almost no statistically discriminable information within the 0–300 VEP time window. 



Inclusion of features only within the later 300-600msP300b window produced a contrasting 
pattern of results. As evident in Figure 4 (left), there was no significant difference between 
the classification accuracies between RSVP (mean = 77.56%, s.d. = 4.74) and Matrix (mean 
= 75.36%, s.d. = 3.74) in this time window (t(1,10) = 1.29, p = 0.23). In contrast to the 0-
300ms window however, the reduction in accuracy was now significantly greater in Matrix 
rather than RSVP: t(1,10) = 3.13, p = 0.01. Similarly, AUC scores also reduced in both 
modes (Figure 4, right; also see ROC curves in Figure 5, bottom), to 0.82 (s.d. = 0.05) in 
RSVP and 0.84 (s.d. = 0.04) in Matrix. But again, this reduction was significantly higher in 
Matrix mode than RSVP: t(1,10) = 4.06, p = 0.002. As a result of this differential reduction, 
the AUC scores were no longer significantly higher in Matrix mode. In other words, during 
the P300b time window, the discriminability of signal vs. noise in the two modes were not 
statistically different. These results complement the pattern observed with the 0-300ms VEP 
window: they show that in contrast to Matrix, the RSVP speller is less influenced by bottom-
up or exogenously triggered visual ERP components (generated by flashing stimuli in Matrix 
mode). Rather, it predominantly derives EEG discriminability from the P300b. We confirmed 
this directly by measuring the statistically significant effect of the interaction between time 
window (0-300ms or 300-600ms) and spelling mode (RSVP or Matrix) on both classification 
accuracy (t(1,10) = 8.62, p < 0.001) and AUC scores ((t(1,10) = 7.37, p < 0.001). 

Letter-level EEG classification 

In order to estimate the extent to which offline performance evaluated in the previous section 
might generalise to an online BCI setting, we used a 50:50 train-test procedure to calculate 
the average number of letters correctly identified in each presentation mode. Figure 6 depicts 
the letter detection accuracy and ITR in RSVP and Matrix modes as a function of the number 
of stimulus repetitions included for detection. The individual values for each participant are 
listed in Tables 3 and 4. As described in the Methods section, letter detection accuracy was 
calculated using a 50:50 train-test procedure. 

Figure 6 Letter detection accuracy (left) and ITR (right) in RSVP and Matrix modes. 
Figure shows mean and standard error of 50:50 train-test letter detection accuracies and ITRs 
as a function of the number of stimulus repetitions. These were calculated by including 
features within either 0-800ms, 0-300ms, or 300-600ms of each epoch. 

Table 3 Individual letter detection accuracies 
Participant  RSVP Matrix  

0-800 0-300 300-600 0-800 0-300 300-600 
1 87.5 6.2 68.8 93.8 93.8 93.8 
2 46.7 0.0 26.7 93.3 86.7 86.7 
3 93.3 6.7 60.0 100.0 91.7 58.3 
4 86.7 20.0 60.0 100.0 73.3 80.0 
5 93.3 60.0 80.0 93.3 93.3 80.0 
6 86.7 0.0 73.3 80.0 80.0 46.7 
7 100.0 80.0 80.0 93.3 93.3 86.7 
8 100.0 40.0 93.3 100.0 100.0 100.0 
9 73.3 6.7 40.0 100.0 73.3 73.3 
10 100.0 13.3 100.0 93.3 93.3 80.0 
11 80.0 53.3 80.0 100.0 100.0 80.0 
Table lists 50:50 train-test letter detection accuracies for each participant in RSVP and Matrix modes, calculated 
by including features within either 0-800ms, 0-300ms or 300-600ms of each epoch. 



Table 4 Individual ITRs  
Participant  RSVP Matrix  

0-800 0-300 300-600 0-800 0-300 300-600 
1 5.0 0.0 3.3 14.2 14.2 14.2 
2 1.7 0.0 0.6 14.1 12.3 12.3 
3 5.7 0.0 2.6 16.3 13.6 6.2 
4 4.9 0.4 2.6 16.3 9.2 10.7 
5 5.7 2.6 4.3 14.1 14.1 10.7 
6 4.9 0.0 3.7 10.7 10.7 4.3 
7 6.5 4.3 4.3 14.1 14.1 12.3 
8 6.5 1.3 5.7 16.3 16.3 16.3 
9 3.7 0.0 1.3 16.3 9.2 9.2 
10 6.5 0.1 6.5 14.1 14.1 10.7 
11 4.3 2.1 4.3 16.3 16.3 10.7 
Table lists 50:50 train-test information transfer rates for each participant in RSVP and Matrix modes, calculated 
by including features within either 0-800ms, 0-300ms or 300-600ms of each epoch. 

We first compared letter detection accuracies when considering all features within the 0-
800ms window. As can be seen in Figure 6 (left), though accuracy in both modes increased as 
more repetitions were included, Matrix outperformed RSVP mode when fewer epochs were 
included. In addition, this increase in accuracy tended to asymptote in both modes, reaching 
86.14% in RSVP (s.d. = 15.63) and 95.19% in Matrix (s.d. = 6.02) when 8 repetitions were 
used for testing (rightmost points of plots in Figure 6). At this point, there was no longer any 
significant difference in accuracy between the modes: t(1,10) = 1.8, p = 0.1. Extrapolating 
this finding to an online BCI setting, the SWLDA classifier would have been able to detect 
the letter the participant was trying to spell equally well in the two modes. 

The calculation of letter detection accuracy did not, however, take into account the lower 
target presentation frequency in RSVP mode. This was captured by the Information Transfer 
Rate (ITR) or bitrate, which highlighted the large difference in effective communication 
speed between the two modes (Figure 6, right). As would be expected, the ITRs increased as 
more repetitions were included, levelling off at significantly different values: 5.03 bits/minute 
(s.d. = 1.45) and 14.83 bits/minute (s.d. = 1.76) in RSVP and Matrix respectively (t(1,10) = 
14.28, p < 0.001). This finding can be attributed to the key difference between the two 
modes: the gaze/space dependence entailed by the Matrix speller means that the presentation 
of a single repetition is much shorter (1.66s). In comparison, the RSVP speller sacrifices 
space, and requires 4.15s to present a single repetition (see sections 2.3.1 and 2.3.2 for 
details). 

To further investigate these trade-offs involved in space (in) dependence, we evaluated the 
role of ERP time windows in driving letter detection accuracy and ITR. Figure 6 plots these 
measures when performing a 50:50 train-test procedure only on features within 0-300ms or 
300-600ms. With the shift to the 0-300ms window, detection accuracy dropped dramatically 
in RSVP mode (Figure 6, left).There was no asymptotic increase with additional stimulus 
repetitions, resulting in mean detection accuracy of only 26.02% (s.d. = 27.75) after 8 
repetitions. Accuracy in Matrix mode, however, still showed an asymptotic increase, reaching 
a significantly higher value of 88.98% (s.d. = 9.51) after 8 repetitions (t(1,10) = 7.12, p < 
0.001). The relative reductions in detection accuracy were also significantly different: t(1,10) 
= 6.58, p < 0.001. As would be expected, mean ITR within the 0-300ms window (Figure 6, 



right) in RSVP also remained low at 0.99 bits/minute (s.d. = 1.44), while it reached 13.12 
bits/minute (s.d. = 2.51) in Matrix, resulting in a large significant difference (t(1,10) = 13.91, 
p < 0.001). The relative reduction in ITR was also significantly different between the two 
modes: t(1,10) = 2.39, p = 0.03. Taken together, these findings reiterate the point that ERPs in 
RSVP mode carried relatively little statistically discriminable information within the 0–300 
VEP time window. Hence the RSVP speller relys almost entirely on the P300b to drive 
performance. 

A contrasting pattern was found on inclusion of features within the 300–600 P300b time 
window. As can be seen in Figure 6, letter detection accuracies and ITRs were adversely 
affected in both modes, but the Matrix mode was clearly more affected by the change from 0-
800ms to 300-600ms. After 8 repetitions, mean detection accuracies were 69.28% (s.d. = 
21.75) in RSVP and 78.67% (s.d. = 15.11) in Matrix. These means were not statistically 
different (t(1,10) = 1.18, p = 0.26), nor were the relative reductions in their values when 
compared to the 0-800ms window. ITRs after 8 repetitions were also reduced with the 300-
600ms time window, to 3.56 bits/minute (s.d. = 1.74) in RSVP and a significantly higher 
value of 10.69 bits/minute (s.d. = 3.36) in Matrix (t(1,10) = 6.25, p < 0.001). Importantly, in 
contrast to the 0-300ms window, this reduction in ITR was significantly larger in Matrix than 
RSVP: t(1,10) = 2.66, p = 0.02. Hence, as with the cross validation analysis, we observed a 
significant interaction between spelling mode (RSVP vs. Matrix) and analysis window (0-
300ms vs. 300-600ms), on both letter detection accuracy (t(1,10) = 6.15, p < 0.001) and ITR 
(t(1,10) = 4.69, p = 0.002). Again, this highlighted the dependence of Matrix mode 
performance on early VEPs and RSVP mode performance on late P300b ERPs. The overall 
pattern of results with 50:50 train-test analysis are qualitatively similar to those obtained with 
cross validation, suggesting that this pattern would be likely to carry over to online 
performance. 

Discussion 

We have motivated interest in completely space-independent BCIs, particularly emphasising 
that deficits associated with overt or covert attentional shifts may make anything other than a 
foveally bound presentation unfeasible. RSVP BCI designs described relatively recently [31-
34] have demonstrated its viability for developing space-independent BCI applications. The 
key design difference in RSVP that enables space independence is that all selection 
alternatives are presented at fixation and selections are detected as perceptual breakthroughs 
indexed by the P300 ERP. From a cognitive perspective, a brief sketch of the processes 
involved in detecting a target in RSVP is as follows. Firstly, a template of the stimulus being 
consciously searched for (e.g. the letter ‘K’ in a BCI) is instantiated into and then held in a 
task set, becoming an effective ‘target’ for that search. The vast majority of non-targets are 
rejected sub-threshold, i.e. without engaging awareness. However, when a match to the target 
template is registered, stimulus representations in the brain are enhanced, generating a 
conscious percept, which is electro physiologically marked by a P300; see [29,43,44] for a 
neural theory formalising this information processing sketch. 

In this work, we have compared RSVP-based spelling to the well-established letter matrix 
design. We have done so in an offline, within-subject setting, while keeping all other 
parameters identical for a fair comparison. The principal finding of this comparison is that 
both designs deliver roughly the same level of accuracy in detecting user selection. In the 
context of fully space-independent BCIs, we have demonstrated that the RSVP approach 
provides a significantly higher throughput than an existing method, the overlaid gratings 



approach described in Allison et al. [26]. Specifically, RSVP achieved a bit rate around 5 
bits/minute. This throughput is similar to that achieved by the online RSVP speller tested by 
[33], and improves upon the SSVEP-based space-independent BCI tested by Allison et al. 
[26], which obtained 1 bit/min or less. However, as would be expected, the Matrix speller 
outperforms RSVP in terms of spelling throughput, due to its exploitation of space to speed 
up stimulus presentation. As we have shown, the flipside of this is that space-dependent 
VEPs have significantly greater influence on EEG classification in the Matrix speller. This 
result informs the consequent trade-offs entailed by RSVP vs. Matrix BCI designs for 
potential applications with patients, depending on the severity of their impairment in 
directing gaze or attention. 

In a valuable experiment [42], compared the performance of the Matrix speller when 
participants were allowed to move gaze and attention in space, to when they were required to 
fixate centrally and covertly attend to target flashes in the letter matrix. They found a severe 
reduction in EEG classification accuracy when only covert attentional shifts were allowed. In 
our comparison of RSVP vs. Matrix, we did not require our participants to fixate centrally in 
the Matrix mode. The main reason for this was because we aimed to estimate the 
performance costs resulting from space independence, by evaluating BCIs at either end of a 
potential spectrum. Yet another reason, as pointed out by [42] themselves, is that requiring 
central fixation in Matrix mode would have significantly increased the cognitive load 
(because of having to fixate centrally while attending peripherally) relative to RSVP. As in 
their study, this would have severely reduced performance in Matrix mode and resulted in an 
unequal comparison. 

When considering real-world applications of RSVP spellers, it is important to note that the 
RSVP speller presented here is a prototype. In particular, many parameters of the design are 
ripe for optimisation. No mode-specific optimisation was performed here, as the aim was to 
ensure an equal comparison between RSVP and Matrix, in the sense that all other 
presentation parameters were kept the same. Amongst those that could be optimised, perhaps 
most significant is the SOA parameter, fixed here at 166ms in both modes. This is effectively 
an arbitrary choice, which has a major impact on the bit-rate obtained. In fact, most 
theoretical studies have used faster presentation (typically with an SOA of ~100ms), and still 
obtained good single target accuracies, often between 80-90%. Indeed, even increasing 
presentation rate beyond 10Hz has been reported to result in relatively small decrements in 
accuracy. For example [29], found a 20% drop in accuracy when SOA fell from 100ms to 
50ms. So, it may be possible to cut the presentation time considerably with only a relatively 
small decrement in behavioural accuracy. However, the effect this would have on P300 size 
and profile remains a question for further empirical study. Stimulus features that make letters 
more discriminable from each other constitute another form of optimisation for improving 
RSVP spelling rates. For example [31,33], have shown that enhancing differences between 
letters by altering their colour and/or shape can influence classification performance. 

One alternative to presenting a full alphabet of letters in RSVP would be to present only the 
10 row and column numbers from the Matrix speller in RSVP [45]. In order to spell a letter, 
the user would have to detect occurrences of the numbers identifying the row and column 
containing the letter they want to spell. Though this alternative would probably require more 
user training, it would make the duration of a repetition (and hence ITR) in RSVP identical to 
that in Matrix. An alternative to this idea is the ‘Center Speller’ [19], which employed a two-
stage approach for a similar speedup of presentation rate: in the first stage, users selected one 
of many letter groups presented serially, in a circle around fixation. Once a letter group 



selection was detected, only letters from that group were then displayed in a circle, and users 
selected one amongst them to complete the second stage. In addition to such optimisations, 
significant improvements in spelling can be generated by exploiting potential synergies 
between classification algorithms coupled with adaptive error correction techniques and 
predictive language models. For example [34,46], have demonstrated the value of fusing 
EEG classification with language modelling to predict the word being spelt. The generation 
and adaptive updating of user-specific language dictionaries are likely to further improve the 
efficacy of this technique. Further improvements in the usability of BCIs are likely with the 
incorporation of asynchronous operational capabilities [47]. 

Other RSVP stimulus presentation issues remain and require empirical clarification. For 
example, is there a bit rate difference between regular and randomised ordering of stream 
stimuli? The former, due to its predictability, is probably easier for the user, while the latter, 
due to its unpredictability, possibly elicits a larger P300. There are also a number of 
psychophysical findings that potentially impact the RSVP speller, these include the 
attentional blink [28,29] and repetition blindness [43,48]. These could be used to constrain 
the structure of RSVP streams, such that, for example, a priori frequently occurring letters do 
not appear in one another’s blink window and the next instance of an item does not arise 
within the repetition blindness window of a previous instance. Indeed, many of the issues 
relating to presentation format arise generally across applications of such ‘subliminal salience 
search’ mechanisms [49], and their empirical resolution could have broad impact. This 
mechanism could be applied in lie detection [49], information retrieval, image triage [50] and 
stimulus rich information presentation [51]. Further understanding of presentation parameters 
and their influence on EEG responses could benefit all such applications. 

Finally, it is worth considering that non-visual forms of BCI designs might also be suitable 
for some patients unable to direct either overt gaze or covert attention in visual space. 
Auditory and tactile modalities have been explored as means to replace visual stimulation in 
such cases (see [35] for a review). Such BCIs usually achieve lower ITRs in comparison to 
the Matrix speller due to the relatively lower ‘bandwidth’ available for presenting 
information in auditory/visual modalities. However, locked-in patients have reported 
difficulties concentrating on stimuli in an auditory instantiation of the Matrix speller [52], 
suggesting that simpler spelling interfaces might be required to match their attentional 
capabilities. Nevertheless, non-visual BCIs might still be viable for achieving gaze and space 
independence, albeit with simpler tasks that reduce cognitive load while sacrificing high 
bitrates [35]. 

Conclusions 

The empirical work presented here has provided a comparative assessment of accuracy and 
efficacy of RSVP and Matrix P300-based BCI spellers. These two spellers are positioned at 
either ends of a spectrum of BCI designs with varying degrees of space independence. We 
find that both designs perform equally well in terms of detecting the user’s selection. Our 
comparison dwells on the trade-offs inherent in the choice between these designs: fully 
space-independent RSVP designs are less efficient, in terms of spelling rate, than gaze and 
space-dependent Matrix designs. However, RSVP designs are also less reliant on early space-
dependent VEPs to drive classification accuracy, which is a key consideration for users 
unable to shift gaze or attention in space. With key improvements to the RSVP design, true 
space-independent BCIs could approach efficiencies on a par with the Matrix speller, making 
it a viable alternative for such users. 
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