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Abstract

Background
Though non-invasive EEG-based Brain Computer Interfaces (BCI) bese researchg

extensively over the last two decades, most designs require coinmatial attention and/
gaze on the part of the user.

Methods

In healthy adults, we compared the offline performance of aespdependent P300-bag
BCI for spelling words using Rapid Serial Visual PresentatR®8\UP), to the well-know
space-dependent Matrix P300 speller.

Results
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Matrix speller's performance was significantly reliant orrlyeagaze-dependent Visual

EEG classifiability with the RSVP speller was as good #is thie Matrix speller. While thE

Evoked Potentials (VEPS), the RSVP speller depended only on the sdapendent P300p.



However, there was a cost to true spatial independence: the RBNE? was less efficient in
terms of spelling speed.

Conclusions

L

The advantage of space independence in the RSVP speller was cantawith a marke
reduction in spelling efficiency. Nevertheless, with key improvemémtthe RSVP desig
truly space-independent BCls could approach efficiencies on parthatiMatrix speller}
With sufficiently high letter spelling rates fused with predietlanguage modelling, the
would be viable for potential applications with patients unable totdinegrt visual gaze g
covert attentional focus.
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Background

There are now a number of relatively mature methods for integiabie brain with modern
computer systems and devices by interpreting electrical brivity in real-time, most
commonly using non-invasive electroencephalography (EEG). In partiddaleG-based
Brain Computer Interfaces (BCIs) have been explored extengsivelythe last two decades,
based on detectable changes observed at the scalp in response tinmagéoy Event-
Related Desynchronisation (ERD) [1-3], Steady State Visual Evéleentials (SSVEPS)
[4], Slow Cortical Potentials (SCPs) [5-7] and the P300 Eventt&keRotential (ERP) [8].
These techniques variously assume motor, neural and cognitiveitespaf the user. For
example, SCP-based BCls rely on feedback that teaches usecslwtat® their own brain
rhythms to produce slow (low-frequency) EEG changes that can betedkia real-time.
Users of typical SSVEP-based approaches, on the other hand, need tteeshifaze to one
amongst many spatially separate flickering patches, aadtdst holding gaze upon one such
patch. Users of the well-studied P300-based letter matrix B€dtdetters in a 2-D grid by
fixating on them and counting flashes [9]. This raises the $®yei of spatial dependence in
BCI designs; that is, what cognitive and residual motor capaaloes use of a particular
BCI method require [10,11]? Most importantly, the extent of a methog@endience on such
capacities governs its domain of applicability, since the degfraeuser’s disability will rule
out certain approaches. For example, a patient without control offgazxample, patients
in a completely locked-in state) will not be able to use an $F585tem employing spatially
offset patches.

Accordingly, there has been much recent interest in BCtsateacompletely independent of
eye gaze and more specifically, whether such independent BRlacbéeve bit rates that
make them feasible. However, there are different levels athwinidependence can be
considered. This is because, even if patients are unable tow&hifvisual attention (i.e. eye
gaze), they might, even with a fixed gaze, be able to spaikaftytheir spotlight of attention
within the visual field, through so calledvert attention. Indeed, a number of psychophysics
experiments on visual attention rely upon this capacity, e.g. att@htcapture [12] or the
Posner task [13]. In addition, selective brain damage to candidat¢ atirdion areas, such
as the Superior Colliculus [14], Pulvinar Nucleus of the thalamus ¢t3he Temporo-



Parietal Junction [16] could result in a variety of hybrid deficitossing the spectrum of
covert and overt visual attention, e.g. Neglect patients exhibittimtsion, but typically
impaired attention deployment specifically to the left visudtifj@7]. Toward applications
with such patient groups, researchers have recently investig@tiedeBigns that are gaze-
independent. These designs rely on the user’'s ability to shiftrtc@agher than overt)
attention in visual space, and detect the presence of consequent P3){L&RP], motion
VEPs [23,24] or changes in alpha band power [25].

However, there may exist patients with deficits that mahifs an inability to spatially shift
and holdeither overt or covert attention, but spare vision at fixation. In additionn éve
holding covert attention at a non-foveal location might be possible fog patrents, it is not
clear to what extent this would induce visual fatigue detrimeotalsability. Thus, it is
interesting to consider BCls that go beyond gaze independence, aendompletely
independent of spatial shifts in attention. That is, could a practical BCI bivpestén which
all stimuli are presented exactly at foveal fixation?

An SSVEP-based method that would seem indeed to be fully spaceriddapas the

SSVEP interface proposed by Allison [26], which presents overlaiddm&lzand vertical

gratings flickering at distinct frequencies. The user then ewodes to perceptually
foreground the desired grating, generating a corresponding SSyiERusEe and providing a
binary communication channel. The approach though, only realised one bitnpe i less

in communication throughput (significantly less than the space-depeallemtative it is

compared with in Allison [26]). This then raises the question of wheth&holly space-
independent BCI could be devised with a bit rate above one per mindtalsa of how that
rate would compare to those of existing space dependent BCls. Inwaifgs, what is the
cost of requiring space independence? These are the questions we explore here.

More specifically, we will consider a particular method forlistag a space-independent
BCI, viz. presenting all stimuli at fixation (with each gtilms rapidly replacing its
predecessor) in, so called, Rapid Serial Visual Presentation RRSWd detecting user
selections via the P300 ERP. Users “search” an RSVP stugantlsat the vast majority of
non-salient items remain sub-threshold, while most of the salens “breakthrough” into
conscious awareness. It is this breakthrough that we detect a®30® Empirical
investigations have demonstrated that this search can be based onrinsiic sdlience, e.g.
a threatening word when searching for job words [27], and (eRphaiitionally-prescribed
task set [28,29]. The latter capability is exploited in the RBMA. For example, at a
particular moment, the BCI user might be searching a stredettefs for a “K”, which
becomes the task set [30]. Demonstrated that ALS patients coeld wmple space-
independent BCI with 4 serially presented choices by generating R86fs recently, BCI
designs have exploited this idea to demonstrate the viability lgtffatiged RSVP spellers
[31,32] to perform online classification of P300s generated by RSSP Extending from
this work [34], successfully tested an online RSVP BCI coupled widigtive language
modelling with a Locked-in Syndrome (LIS) patient. The ‘Centerl&pgroposed by [19]
further optimises the design of space-independent spellers, pjoyeny a two-level
procedure to first select a letter group presented in a cirelad fixation, and then select a
letter within that group.

These developments bode well for practical applications of space-imtegespellers.
However, in choosing a BCI design for a particular patient,vtagh considering the trade-
offs inherent in opting for true spatial independence (see [35] fomarehensive review of



BCls from this perspective). Toward informing this choice, our objeah this article is to
comparatively assess the RSVP and Matrix spellers in aneofetting. These two designs
effectively lie at either end of a potential spectrum of spagependence within which gaze-
independent BCls represent intermediate levels. In particularyevmtarested in how key
differences in the target frequency and stimulus layout in theskers feed into the time
course of consequent EEG dynamics and classifiable informaticeirth€o make a fair and
general sable comparison, we employ ‘plain vanilla’, standatdntiations of the spellers,
while keeping all other experimental parameters the samewWahow that the RSVP
design performs considerably better than the SSVEP-basedid\wdtangs design [26], and
has an accuracy on par with the Matrix speller [9]. Furtherwilledemonstrate that in
sacrificing space, the RSVP approach in its basic form has lbweighput, but at the same
time is less dependent on space-dependent ERPs for its perforimagicing so, we provide
a current assessment of the cost of space-independence in P300-based BCI spellers

Methods

Participants

The study was approved by the ethics committee of the Fadulgiences at the University
of Kent. It included eleven participants (five female, six maledf whom were students at
the University of Kent and ranged in age from 19-26.All participaete wght-handed, free
from neurological disorders, and had normal or corrected-to-normahyvishey provided
written consent and were paid for their participation.

Stimulus presentation

Participants were asked to spell words by counting occurrenctse afonstituent letters.
Alphabet stimuli were presented on a 20" LCD screen with @&gkefrate of 60Hz and a
resolution of 1280x1024, placed at a distance of 60cm from the partic@muli were
presented in uppercase white colour on dark grey background, and subtemcedhaately
2.5 degrees of visual angle.

Stimuli

Participants were presented six 5-letter English words (‘RIGWVORLD’, ‘BLACK’,
‘QUEST’, ‘FLAME’ and ‘HEAVY’) in two modes of presentation, R¥/and Matrix,
making up a total of twelve words they were asked to spell. Théswoeere chosen so as to
have equal lengths, and to ensure that all letters of the atpladye proportionally
represented. The order and mode in which these words were presesteahd@mised to
prevent any unintended performance difference between the two nBefese presenting
any of the words, participants undertook a practice session, in wheckvdrd ‘HI'’ was
presented once in each mode. Data from the practice sessionexaueled from any
analysis.

RSVP mode
Each word comprised fivielocks (one per letter), with successive letters being designated as

target in each block. Within each block, there were a number of e8mepetitions, varying
randomly between 8 and 12. This randomisation ensured that there wdsaobel



counting task required of participants (see below). Each repetibnsisted of an RSVP
stream of 25 uppercase English letters flashed in random ardewithout repetition at the
centre of visual fixation (the letter X was excluded becaus@st already used as a fixation
cross before the beginning of the stream). The target leteeprgaented exactly once in each
repetition. The Stimulus Onset Asynchrony (SOA) for each letter was 166thsmon time
of 133ms and off time of 33ms.

Matrix mode

The overall structure of the Matrix mode was the same as R®AIR blocks of letters
making up a word. The main change was that instead of presertexg lea RSVP, we
employed the well-known 2-D speller matrix originally proposed bagMell and Donchin
[9]. Here, participants were shown a 5 x 5 matrix of the saléetters as in RSVP. A
repetition was defined as the successive flashing of all 5 irowendom order, followed by
all 5 columns in random order. As with RSVP, each flash lasted 138ohsyas followed by
an off time of 33ms. This resulted in a key duration differencedsivthe RSVP and Matrix
modes: while a single repetition in RSVP consisted of 25 leteseptations lasting 4.15s (=
25 x 166ms), an equivalent repetition in Matrix lasted 1.66s (= 10 x 166ms).

Experimental task

In both presentation modes, there were no pauses between repetitidhsydutere pauses
after each letter block. At the beginning of each word, particspaete asked to count the
number of times they saw each target letter being presentédshed (depending on the
mode). Since participants were told that they would be askegdot the number of targets
they counted, the randomisation of the number of repetitions in a blmked! us to
behaviourally measure whether they attended equally well in both modes.

In RSVP mode, participants were asked to focus their gaze amdl att the entire RSVP
stream, while in Matrix mode they were instructed to focug tpeze and attention only on
the target letter located within the matrix. These instructivese followed by the current
word being displayed at the top of the screen. After 2s, the tiatget to be counted was
highlighted in red. Alongside, either a fixation cross (‘X’; RSvBde) or the spelling matrix
(in light grey colour; Matrix mode) was presented. 5s following, thresentation of letters
began, either in RSVP or by flashing rows and columns of the n{ageFigure 1). At the
end of each block, participants were presented with a list of mgnileéween 8 and 12 in
random order, followed by a ‘None of Above’ option. They were instruictadse only the

up, down and enter keys on a standard UK keyboard to select an option inpaedguas
fashion. Once they had done so, the next letter in the current wordigidghted as the

target letter and the next block began. Participants were requesdgoid eye blinks or any
body movements during a letter block. They were permitted to blinkedaxi at the end of
each block.

Figure 1 Example of stimulus presentation in RSVP (left) and Matrix (right).In both
modes, 2nd letter ‘O’ (the target letter) of the word ‘WORLD'’ is being spell is

highlighted in red. In RSVP mode, letters were presented in rapid successiomaht cent
fixation. Participants counted occurrences of the target in the sequenceriknirivtatte, rows
and then columns of the letter display were rapidly flashed on and off. Participanedcount
the number of times the target was flashed.




EEG setup collection

Electroencephalographic data was recorded from 7 scalp electfedeC, , P, Ps, Py, Oy,
O,) within the standard 10-20 system and the 2 earlobgar(@ A) using a Brain Products
QuickAmp recorder (Brain Products, Munich, Germany). The 7 scafreties were chosen
based on a previous study [36], which showed that a similar montag€,(FF; , O, , PG,
PQs) produced the best P300b classification performance. We choRe ©, and Q instead
of PO,, PGy and Q as we were additionally interested in recording bilaterapadat steady-
state responses to RSVP and Matrix mode stimuli. The lefoidasts set to be the ground
electrode. The sampling rate was 1000Hz, and the data were average refenernoaadpass
filtered online during recording, between 0.3-85Hz. Electrooculograms Y@@ recorded
from the left and right eyes using two bipolar horizontal and &ritOG electrodes.
Impedances were always below 7kOhm (2.27kOhm on average).

Pre-processing

Continuous EEG data from each participant was first down samp@aDtdz and then low-
pass filtered at 40Hz. Individual epochs were then extracteddyenting the data between
-200ms and 800ms relative to the time of each letter presentatioearlLirends were
removed from each epoch and they were adjusted to have ageawémero baseline activity
between —200 and Oms. Approximately 7500 epochs were generated in RSVR2%0de
letters x ~10 repetitions x 5 letters x 6 words) including 30@etaepochs. Similarly, there
were around 3000 epochs (10 flashes x ~10 repetitions x 5 letter®pd§)wn Matrix mode,
including 600 target epochs. Artefactual epochs containing peak-tovaeiakion greater
than 10QV in EOG or EEG channels were excluded from epoch-levelifitag®on analysis.
The epochs were finally re-referenced to the linked mastoid@ties, which, along with the
EOG electrodes, were then removed from the data.

In order to make a fair comparison between the two modes, we t@rmmrepochs in the
Matrix mode, so as to make each epoch therein equivalent to an ep&3VP mode.
Specifically, we took the 10 epochs in a Matrix mode repetitioncantbined each one of
the 5 epochs corresponding to a row flash with each of the 5 corresptmdicglumn flash,
by averaging every such pair. Each of these 25 new Matrix modea\patiage’ epochs thus
generated was the same length as RSVP mode epochs. Furthernttoeee &5, only the one
averaging over the two epochs corresponding to the target row andhcibdisim was marked
as the new target epoch, while the remaining 24 were marked atargeh epochs.
Importantly, this pair-averaging ensured that, in either mode, ghipwequal number of
target and non-target epochs were available for classificatiaiyses, and that performance
estimates could be validly compared. Furthermore, each of these ireavgrage epochs
could be considered to be ‘informationally equivalent’ to their R$Wode counterparts, as
data from two flashes in each repetition (one row and one colummg¢gueed to uniquely
detect the selection of a letter in Matrix mode.

To generate features for the classification analyses, vdagafirst downsampled to 25Hz.
Then the 20 samples between 0-800ms (or 300-600ms in follow-up analysighe 7 scalp
channels in each epoch were concatenated to form one ‘observatitime déature set,
consisting of 140 features. Finally, feature vectors were convierteormalized Z-scores by
subtracting out the feature-wise means and then dividing by thectiespstandard
deviations.



Epoch-level classification

Stepwise linear discriminant analysis (SWLDA; Draper anditlsrf87]) and Receiver
Operating Characteristic (ROC) analysis was employed s$timate the optimal
discriminability of targets from non-targets based on thelesitngal P300 evoked in the two
presentation modes. SWLDA has been shown to work well in EEG mastsifi, providing
an effective trade-off between complexity and speed [38,39].

In order to assess the classifier's generalisability, wel ud®fold cross validation to
calculate accuracy. Specifically, during each fold, a diffei®% of target and 10% of non-
target epochs were excluded for testing. Then a SWLDA clesstih algorithm with a
feature entrance tolerance of 0.1 and exit tolerance of 0.15 [38}auaasd on the remaining
target and non-target epochs. The algorithm returned a coeffiggaght and p-value for
each feature, indicating its efficacy as a predictor. Thesights were sorted by their p-
values, and the 60 (or fewer) best features, i.e.,with the Igweatues,which were also
included in the regression model generated by SWLDA, were theciesgl The weights of
these best features were then used to calculate classifiegiimates of the same training
epochs. ROC analysis of these estimates was used to caR@@&teurves and the optimal
signal detection threshold (or ‘criterion’) that maximised tHéeince between the number
of true and false positives. This key step improved overall cleadn accuracies by
correcting for the classifier's detection bias, due to the feignt difference in the number of
epochs of each class included for training. Next, the 60 clasgifaghts were used to
calculate classification estimates of the previously excludsdepochs. The threshold was
then applied to these estimates to decide classification outcoimtée test epochs, and
accuracy for the fold. This entire procedure was repeated 10, foyjexcluding a different
10% of epochs each time. Overall cross-validated accuracy, thremmbldreas under the
ROC curves were estimated as averages of the values calculated in each fold.

Letter-level classification

To simulate and compare performance of the two modes in an onlinesddtiiig, we
calculated the average number of letters correctly idedtih each presentation mode using
a 50:50 train-test procedure. All epochs, including artefactual exelsded above, were
considered for this analysis, to generate a realistic estiofatnline performance. For each
participant, a SWLDA classifier was trained on epochs from itisé three words in each
mode, and tested with epochs from the last three words. For etrhbletk in the tested
words, classification estimates for each instance of the #&rdepresented/flashed were
separately averaged across the first 8 repetitions making Unpottie(as all letter blocks had
at least 8 repetitions). The letter that got the highestageeestimate in a block was
considered to be the most likely target letter, and marked a#figtgbrrectly if it matched
the actual letter in the word the participant had been asksgketb With this procedure, we
estimated the letter detection accuracy and ITR in eachnpatise mode. Information
Transfer Rate (ITR) or bitrate, in bits/minute, was calcdldtem B, the average number of
bits transmitted per block [40,41], using the equations below.

B=log, N +Plog,P+ (1—P)Iogle_—Pl

ITR:E
T



whereT is the average duration of a letter block in ming@69 and 0.28 minutes in RSVP
and Matrix, respectively)\ is the number of possible targets (25 in both modespPaadhe
probability of accurate letter detection.

Statistical comparisons between conditions of interese werformed using paired t-tests
that accounted for potentially unequal variance® fFhalue and p-value calculated for each
comparison are reported inline with the results below.

Results

Behaviour

We compared the accuracy with which participants vadéte to correctly count occurrences
of target letters amongst non-targets in the RSVP aattiMmodes. More specifically, for
each letter block, we calculated the absolute diffee between the number of times the
target letter was presented/flashed and the numbemes tit was reported as seen. These
differences were then averaged separately by sulmectmode. Participants saw an average
of 86.02% (s.d. = 6.76) and 88.58% (s.d. = 10.57agdets in RSVP and Matrix modes,
respectively. This difference was not significant ipaared t-test (t(1,10) = 0.66, p = 0.52),
i.e. participants saw/missed roughly the same propodiidargets in both modes. Hence we
concluded that there was no systematic differentelravioural performance between RSVP
and Matrix modes across the participant group.

Event related potentials

The ERP grand averages at each scalp electroderfmtdaand non-targets in RSVP and
Matrix modes are shown in Figures 2 and 3, respectieliRSVP mode, targets evoke an
early frontal response around 250ms, followed by dively large, distinct parietal P300Db,

peaking at 428ms. In Matrix mode, targets evoked aratliferent ERP pattern, similar to

those found by [42]: early Visual Evoked Potential€Py with a negative going peak at
around 170ms, followed later by a relatively eardad smaller P300b peaking at 352ms.
Note that this Matrix mode ERP was generated by ‘g@a@raging’ epochs, one for the row
flash, and one for the column flash (see the Methodadoar details).

Figure 2 ERPs evoked by targets (left) and non-targets (right) in RSVP mod&argets
evoke an early frontal response at 252ms, followed tgJatively large, distinct parietal
P300b, peaking at 428ms.

Figure 3 ERPs evoked by targets (left) and non-targets (right) in Matrix modeTargets
generate an early Visual Evoked Potential (VEP) witiegative going peak at 170ms,

followed later by a relatively early and small P3@@aking at 352ms. These ERPs were
generated by ‘pair-averaging’ epochs, one for theftash, and one for the column flash.

The observed differences in the ERPs evoked byteangdRSVP and Matrix can be ascribed
to key differences in the presentation modes. Users meditbe RSVP stream for a briefly
presented target letter. Stimuli in the centrallysprded RSVP sequence set up a strong
steady-state response (Figure 2, right), which was tarifyointerrupted by the relatively
larger P300b evoked by targets (Figure 2, left).tnother hand, participants shifted their
gaze to targets that were always visible in the Maspellerto detect a change only in



luminosity, explaining the pronounced early VEP [4#aking around 200ms (Figure 3,
left).Further, the P300b obtained was smaller in Mapossibly because target events were
more frequent in Matrix (2 flashes out of every 1@ntim RSVP (1 presentation out of every
25). However, it should be noted that the effecstohulus frequency on RSVP P300b ERPs
is yet to be fully characterised in the literaturé.cOurse, there was a cost attached to the
more novel targets and larger and hence more discriteif®800b in RSVP mode: a single
repetition took 2.5 times longer, adversely affectimg maximum rate at which letters could
be spelt. Next, we investigate how these countergaiifiluences affect EEG classification
and spelling rates.

Epoch-level EEG classification

The mean and standard error (across subjects) of theldL@+bss-validated classification
accuracy of individual epochs in RSVP and Matrix nsodee shown in Figure 4. Also
plotted alongside are the corresponding Areas Un@eRC Curves (AUC). The individual
values for each participant are listed in Tables 1 Znthe corresponding ROC curves are
shown in Figure 5 (top). Note that classification irmthk mode was performed on ‘pair-
averaged’ epochs, which ensured that equal numbemoohswere included for training and
testing in both spelling modes (see the Methods sediaetails).

Figure 4 Epoch classification accuracy (left) and AUC scores (right) in RSVP and
Matrix modes. Figure shows mean and standard error of 10-fold cralsgated epoch
classification accuracies and AUC scores. These werealad by including features within
either 0-800ms, 0-300ms, or 300-600ms of each epoch.

Table 1Individual classification accuracies

Participant RSVP Matrix

0-800 0-300  300-600 0-800 0-300  300-600
1 75.9 55.9 74.0 84.4 81.7 74.7
2 76.9 62.7 73.8 83.3 78.2 76.3
3 75.9 60.3 73.4 85.2 81.9 73.2
4 81.7 69.7 73.2 83.4 77.9 78.9
5 84.0 71.6 78.3 87.5 79.9 79.0
6 80.0 60.0 76.8 72.2 76.8 67.4
7 86.0 75.2 83.4 89.7 87.5 81.5
8 85.3 70.8 82.9 87.2 80.0 73.2
9 80.4 53.8 71.5 81.5 73.8 75.1
10 86.9 65.4 83.8 85.5 82.2 75.7
11 84.3 74.2 82.1 84.3 79.3 73.9

Table lists 10-fold cross-validated epoch clasatfan accuracies for each participant in RSVP aratriM
modes, calculated by including features within&ith-800ms, 0-300ms or 300-600ms of each epoch.



Table 2 Individual AUCs

Participant RSVP Matrix

0-800 0-300  300-600 0-800 0-300  300-600
1 0.83 0.64 0.79 0.93 0.91 0.83
2 0.76 0.64 0.71 0.93 0.87 0.85
3 0.84 0.65 0.79 0.93 0.91 0.85
4 0.85 0.71 0.76 0.92 0.88 0.86
5 0.87 0.77 0.84 0.95 0.89 0.88
6 0.87 0.66 0.82 0.84 0.83 0.74
7 0.92 0.81 0.85 0.97 0.95 0.91
8 0.91 0.73 0.87 0.95 0.91 0.83
9 0.86 0.55 0.81 0.92 0.84 0.84
10 0.93 0.66 0.89 0.94 0.92 0.84
11 0.89 0.79 0.87 0.94 0.89 0.83

Table lists areas under the ROC curve averagedad® cross-validation runs for each participanR8VP
and matrix modes, calculated by including featuséthin either 0-800ms, 0-300ms or 300-600ms of each
epoch.

Figure 5 ROC curves in RSVP (left) and Matrix (right) modes.Figure depicts subject-
wise Receiver Operating Characteristic (ROC) curvesdch participant and each cross-
validation run, in RSVP and Matrix modes. Curves atewred by participant, and were
calculated by including features within either 0-8%) 0-300ms, or 300-600ms of each
epoch.

The first key finding was that a comparison of clasdificaaccuracy when considering all
features within the 0-800ms time window revealed noifsogmt difference between RSVP
and Matrix modes (t(1,10) = 1.69, p = 0.12): mean evadislated accuracies were 81.57%
(s.d. = 4.07) and 84.01% (s.d. = 4.54) in RSVP andriMaespectively (Figure 4, left).
However, AUC scores were significantly higher in Matmode (mean = 0.93; s.d. = 0.03)
than RSVP (mean = 0.87; s.d. = 0.05): t(1,10) = 3®% 0.003 (Figure 4, right). This
difference highlighted the improved discriminabilitiysagnal to noise in Matrix epochs, due
in part to pair-averaging of epochs in this mode.

In order to measure the differential extents to wheehly and late ERP components, in
particular VEPs and the P300b, affected classificatirepeated the above analysis, only
considering features within either the 0-300ms or th@-&0ms time windows. We first
focus on the results within the 0-300ms VEP window. Aswshon Figure 4 (left),
classification accuracies reduced in both modes. BWRR&ode accuracies (mean =
65.42%, s.d. = 7.40) were now significantly lowemtiatrix (mean = 79.92%, s.d. = 3.53):
t(1,10) = 5.86, p< 0.001. Further, this reductionacturacy was significantly greater in
RSVP than in Matrix: t(1,10) = 6.03, p < 0.001. Angar pattern was observed in the AUC
scores with features within 0-300ms (Figure 4, rightoatee ROC curves in Figure 5,
middle): mean AUC went down to 0.69 (s.d. = 0.08) BMR, but only to 0.89 (s.d. = 0.04)
in Matrix, resulting in a large significant differesct(1,10) = 7.66, p < 0.001. As with the
classification accuracy, this decrease in AUC scores wad#isantly larger in RSVP than
Matrix: t(1,10) = 6.3, p < 0.001.This pattern of iesus convergent with previous reports of
the major influence of gaze-dependent early VEPs &G Elassifiability when using the
Matrix P300 BCI [42]. As our findings show, the EEGpenses in the RSVP speller carried
almost no statistically discriminable information withine 0—300 VEP time window.



Inclusion of features only within the later 300-600nm3®8window produced a contrasting
pattern of results. As evident in Figure 4 (left),réhevas no significant difference between
the classification accuracies between RSVP (mean $%(.5.d. = 4.74) and Matrix (mean
= 75.36%, s.d. = 3.74) in this time window (t(1,10129, p = 0.23). In contrast to the O-
300ms window however, the reduction in accuracy was significantly greater in Matrix
rather than RSVP: t(1,10) = 3.13, p = 0.01. SimylaAUC scores also reduced in both
modes (Figure 4, right; also see ROC curves in Figute@om), to 0.82 (s.d. = 0.05) in
RSVP and 0.84 (s.d. = 0.04) in Matrix. But agairns leduction was significantly higher in
Matrix mode than RSVP: t(1,10) = 4.06, p = 0.002.28A=sult of this differential reduction,
the AUC scores were no longer significantly higheMatrix mode. In other words, during
the P300b time window, the discriminability of signal woise in the two modes were not
statistically different. These results complement theepatbbserved with the 0-300ms VEP
window: they show that in contrast to Matrix, the RESSpeller is less influenced by bottom-
up or exogenously triggered visual ERP components (getkby flashing stimuli in Matrix
mode). Rather, it predominantly derives EEG discrimilitglfrom the P300b. We confirmed
this directly by measuring the statistically significaffiect of the interaction between time
window (0-300ms or 300-600ms) and spelling mode (RSMRatrix) on both classification
accuracy (t(1,10) = 8.62, p < 0.001) and AUC sca(t€s,10) = 7.37, p < 0.001).

Letter-level EEG classification

In order to estimate the extent to which offline parfance evaluated in the previous section
might generalise to an online BCI setting, we use@:8(btrain-test procedure to calculate
the average number of letters correctly identifie@ach presentation mode. Figure 6 depicts
the letter detection accuracy and ITR in RSVP amadriM modes as a function of the number
of stimulus repetitions included for detection. Theivlal values for each participant are
listed in Tables 3 and 4. As described in the Methodsosedetter detection accuracy was
calculated using a 50:50 train-test procedure.

Figure 6 Letter detection accuracy (left) and ITR (right) in RSVP and Matrix modes.
Figure shows mean and standard error of 50:50 tratrietter detection accuracies and ITRs
as a function of the number of stimulus repetitions. Thege calculated by including
features within either 0-800ms, 0-300ms, or 300-600madai epoch.

Table 3Individual letter detection accuracies

Participant RSVP Matrix

0-800 0-300 300-600 0-800 0-300 300-600
1 87.5 6.2 68.8 93.8 93.8 93.8
2 46.7 0.0 26.7 93.3 86.7 86.7
3 93.3 6.7 60.0 100.0 91.7 58.3
4 86.7 20.0 60.0 100.0 73.3 80.0
5 93.3 60.0 80.0 93.3 93.3 80.0
6 86.7 0.0 73.3 80.0 80.0 46.7
7 100.0 80.0 80.0 93.3 93.3 86.7
8 100.0 40.0 93.3 100.0 100.0 100.0
9 73.3 6.7 40.0 100.0 73.3 73.3
10 100.0 13.3 100.0 93.3 93.3 80.0
11 80.0 53.3 80.0 100.0 100.0 80.0

Table lists 50:50 train-test letter detection aacigs for each participant in RSVP and Matrix meodatculated
by including features within either 0-800ms, 0-3@0on 300-600ms of each epoch.



Table 4Individual ITRs

Participant RSVP Matrix
0-800 0-300  300-600 0-800 0-300  300-600

1 5.0 0.0 3.3 14.2 14.2 14.2
2 1.7 0.0 0.6 14.1 12.3 12.3
3 5.7 0.0 2.6 16.3 13.6 6.2
4 4.9 0.4 2.6 16.3 9.2 10.7
5 5.7 2.6 4.3 14.1 14.1 10.7
6 4.9 0.0 3.7 10.7 10.7 4.3
7 6.5 4.3 4.3 14.1 14.1 12.3
8 6.5 1.3 5.7 16.3 16.3 16.3
9 3.7 0.0 1.3 16.3 9.2 9.2
10 6.5 0.1 6.5 14.1 14.1 10.7
11 4.3 2.1 4.3 16.3 16.3 10.7

Table lists 50:50 train-test information transfates for each participant in RSVP and Matrix modaf;ulated
by including features within either 0-800ms, 0-3@0on 300-600ms of each epoch.

We first compared letter detection accuracies whersidering all features within the O-
800ms window. As can be seen in Figure 6 (left), thagiuracy in both modes increased as
more repetitions were included, Matrix outperformed/RSnode when fewer epochs were
included. In addition, this increase in accuracy éehtb asymptote in both modes, reaching
86.14% in RSVP (s.d. = 15.63) and 95.19% in Matsixl.(= 6.02) when 8 repetitions were
used for testing (rightmost points of plots in FigureA)this point, there was no longer any
significant difference in accuracy between the mot{dsiO) = 1.8, p = 0.1. Extrapolating
this finding to an online BCI setting, the SWLDA cldssi would have been able to detect
the letter the participant was trying to spell egualéll in the two modes.

The calculation of letter detection accuracy did, immwever, take into account the lower
target presentation frequency in RSVP mode. This wasiied by the Information Transfer
Rate (ITR) or bitrate, which highlighted the lardéference in effective communication
speed between the two modes (Figure 6, right). As woelldxpected, the ITRs increased as
more repetitions were included, levelling off at sfgaintly different values: 5.03 bits/minute
(s.d. = 1.45) and 14.83 bits/minute (s.d. = 1.76) ivR&nd Matrix respectively (t(1,10) =
14.28, p < 0.001). This finding can be attributedthe key difference between the two
modes: the gaze/space dependence entailed by the Mjagtler means that the presentation
of a single repetition is much shorter (1.66s). In compar the RSVP speller sacrifices
space, and requires 4.15s to present a single repefgémn sections 2.3.1 and 2.3.2 for
details).

To further investigate these trade-offs involved incep@n) dependence, we evaluated the
role of ERP time windows in driving letter detectiaccuracy and ITR. Figure 6 plots these
measures when performing a 50:50 train-test proceduyeom features within 0-300ms or
300-600ms. With the shift to the 0-300ms window, detecticcuracy dropped dramatically
in RSVP mode (Figure 6, left).There was no asymptoticease with additional stimulus
repetitions, resulting in mean detection accuracy il ®6.02% (s.d. = 27.75) after 8
repetitions. Accuracy in Matrix mode, however, siibwed an asymptotic increase, reaching
a significantly higher value of 88.98% (s.d. = 9.5ffer 8 repetitions (t(1,10) = 7.12, p <
0.001). The relative reductions in detection acouraere also significantly different: t(1,10)
= 6.58, p < 0.001. As would be expected, mean ITiRimvthe 0-300ms window (Figure 6,



right) in RSVP also remained low at 0.99 bits/minwgeal.(= 1.44), while it reached 13.12
bits/minute (s.d. = 2.51) in Matrix, resulting in agarsignificant difference (t(1,10) = 13.91,
p < 0.001). The relative reduction in ITR was alsm#icantly different between the two

modes: t(1,10) = 2.39, p = 0.03. Taken together, thiedmgs reiterate the point that ERPs in
RSVP mode carried relatively little statistically distinable information within the 0-300

VEP time window. Hence the RSVP speller relys almosiredp on the P300b to drive

performance.

A contrasting pattern was found on inclusion of fesguwithin the 300-600 P300b time
window. As can be seen in Figure 6, letter detectiocuracies and ITRs were adversely
affected in both modes, but the Matrix mode was cleadye affected by the change from 0-
800ms to 300-600ms. After 8 repetitions, mean detecticnracies were 69.28% (s.d. =
21.75) in RSVP and 78.67% (s.d. = 15.11) in Matfikese means were not statistically
different (t(1,10) = 1.18, p = 0.26), nor were tiedative reductions in their values when
compared to the 0-800ms window. ITRs after 8 repestiwere also reduced with the 300-
600ms time window, to 3.56 bits/minute (s.d. = 1.74) BVR and a significantly higher
value of 10.69 bits/minute (s.d. = 3.36) in MatrixL(1(0) = 6.25, p < 0.001). Importantly, in
contrast to the 0-300ms window, this reduction in IT&wignificantly larger in Matrix than
RSVP: 1(1,10) = 2.66, p = 0.02. Hence, as with tlus< validation analysis, we observed a
significant interaction between spelling mode (RSVP Matrix) and analysis window (O-
300ms vs. 300-600ms), on both letter detection accytélcy0) = 6.15, p < 0.001) and ITR
(t(1,20) = 4.69, p = 0.002). Again, this highlight¢de dependence of Matrix mode
performance on early VEPs and RSVP mode performandat@®f®300b ERPs. The overall
pattern of results with 50:50 train-test analysis a@igively similar to those obtained with
cross validation, suggesting that this pattern wouldlibely to carry over to online
performance.

Discussion

We have motivated interest in completely space-indegger8lClIs, particularly emphasising
that deficits associated with overt or covert atter@ishifts may make anything other than a
foveally bound presentation unfeasible. RSVP BCI desipscribed relatively recently [31-
34] have demonstrated its viability for developing spmcdependent BCI applications. The
key design difference in RSVP that enables space amdkgmce is that all selection
alternatives are presented at fixation and selectimsletected as perceptual breakthroughs
indexed by the P300 ERP. From a cognitive perspectvbrief sketch of the processes
involved in detecting a target in RSVP is as follofsisstly, a template of the stimulus being
consciously searched for (e.g. the letter ‘K’ in alB& instantiated into and then held in a
task set, becoming an effective ‘target’ for that deafhe vast majority of non-targets are
rejected sub-threshold, i.e. without engaging awasrndowever, when a match to the target
template is registered, stimulus representations in the lar@ enhanced, generating a
conscious percept, which is electro physiologicallykedrby a P300; see [29,43,44] for a
neural theory formalising this information processing cket

In this work, we have compared RSVP-based spellintpeowell-established letter matrix
design. We have done so in an offline, within-subjeetting, while keeping all other
parameters identical for a fair comparison. The pradcfmding of this comparison is that
both designs deliver roughly the same level of acgunaaetecting user selection. In the
context of fully space-independent BCls, we have detnated that the RSVP approach
provides a significantly higher throughput than amstaxy method, the overlaid gratings



approach described in Allisogt al. [26]. Specifically, RSVP achieved a bit rate ard.b
bits/minute. This throughput is similar to that achietsgdhe online RSVP speller tested by
[33], and improves upon the SSVEP-based space-indemteBd# tested by Allisoret al.
[26], which obtained 1 bit/min or less. However, as lddoe expected, the Matrix speller
outperforms RSVP in terms of spelling throughput, dugst@xploitation of space to speed
up stimulus presentation. As we have shown, the flipsfdhnis is that space-dependent
VEPs have significantly greater influence on EEG cliasgion in the Matrix speller. This
result informs the consequent trade-offs entailed byWMRSs. Matrix BCl designs for
potential applications with patients, depending oe #everity of their impairment in
directing gaze or attention.

In a valuable experiment [42], compared the performaat the Matrix speller when
participants were allowed to move gaze and attemi@pace, to when they were required to
fixate centrally and covertly attend to target flesin the letter matrix. They found a severe
reduction in EEG classification accuracy when onlyerbattentional shifts were allowed. In
our comparison of RSVP vs. Matrix, we did not requive participants to fixate centrally in
the Matrix mode. The main reason for this was becauseawed to estimate the
performance costs resulting from space independencejabyaéing BCls at either end of a
potential spectrum. Yet another reason, as pointedy(42] themselves, is that requiring
central fixation in Matrix mode would have signifitgnincreased the cognitive load
(because of having to fixate centrally while atiegdperipherally) relative to RSVP. As in
their study, this would have severely reduced perfoomam Matrix mode and resulted in an
unequal comparison.

When considering real-world applications of RSVP gps]lit is important to note that the
RSVP speller presented here is a prototype. In p&ticonany parameters of the design are
ripe for optimisation. No mode-specific optimisation wasf@med here, as the aim was to
ensure an equal comparison between RSVP and Matrixhensense that all other
presentation parameters were kept the same. Amongstthaismuld be optimised, perhaps
most significant is the SOA parameter, fixed here ati6h both modes. This is effectively
an arbitrary choice, which has a major impact on theabe obtained. In fact, most
theoretical studies have used faster presentation @iypieith an SOA of ~100ms), and still
obtained good single target accuracies, often betvd880%. Indeed, even increasing
presentation rate beyond 10Hz has been reportedsuidt ie relatively small decrements in
accuracy. For example [29], found a 20% drop in exuwhen SOA fell from 100ms to
50ms. So, it may be possible to cut the presentationdonsiderably with only a relatively
small decrement in behavioural accuracy. Howevereffext this would have on P300 size
and profile remains a question for further empiricatigtistimulus features that make letters
more discriminable from each other constitute anothen fof optimisation for improving
RSVP spelling rates. For example [31,33], have showhehhancing differences between
letters by altering their colour and/or shape caluémice classification performance.

One alternative to presenting a full alphabet detstin RSVP would be to present only the
10 row and column numbers from the Matrix speller in R¥5]. In order to spell a letter,
the user would have to detect occurrences of the msmdbentifying the row and column
containing the letter they want to spell. Thougls thiernative would probably require more
user training, it would make the duration of a repti(and hence ITR) in RSVP identical to
that in Matrix. An alternative to this idea is th@enter Speller’ [19], which employed a two-
stage approach for a similar speedup of presentatienimathe first stage, users selected one
of many letter groups presented serially, in a circtleuiad fixation. Once a letter group



selection was detected, only letters from that groapewhen displayed in a circle, and users
selected one amongst them to complete the second staggdition to such optimisations,
significant improvements in spelling can be generatedexyloiting potential synergies
between classification algorithms coupled with adap®veor correction techniques and
predictive language models. For example [34,46], hdemonstrated the value of fusing
EEG classification with language modelling to predie word being spelt. The generation
and adaptive updating of user-specific languageataties are likely to further improve the
efficacy of this technique. Further improvements ia tisability of BCls are likely with the
incorporation of asynchronous operational capaédifd7].

Other RSVP stimulus presentation issues remain and regoiparical clarification. For
example, is there a bit rate difference between aegamd randomised ordering of stream
stimuli? The former, due to its predictability, is prblyaeasier for the user, while the latter,
due to its unpredictability, possibly elicits a largeB00. There are also a number of
psychophysical findings that potentially impact th&\WR speller, these include the
attentional blink [28,29] and repetition blindned8,@8]. These could be used to constrain
the structure of RSVP streams, such that, for exampleoa frequently occurring letters do
not appear in one another’'s blink window and thet mestance of an item does not arise
within the repetition blindness window of a previoustance. Indeed, many of the issues
relating to presentation format arise generally acrppBcations of such ‘subliminal salience
search’ mechanisms [49], and their empirical resolutionldcdhave broad impact. This
mechanism could be applied in lie detection [49],imfation retrieval, image triage [50] and
stimulus rich information presentation [51]. Furthederstanding of presentation parameters
and their influence on EEG responses could benesuah applications.

Finally, it is worth considering that non-visual formisBC| designs might also be suitable
for some patients unable to direct either overt gazeowert attention in visual space.
Auditory and tactile modalities have been explorethaans to replace visual stimulation in
such cases (see [35] for a review). Such BCls usaalyeve lower ITRs in comparison to
the Matrix speller due to the relatively lower ‘bandth’ available for presenting
information in auditory/visual modalities. However, ked-in patients have reported
difficulties concentrating on stimuli in an auditomystantiation of the Matrix speller [52],
suggesting that simpler spelling interfaces might be reduio match their attentional
capabilities. Nevertheless, non-visual BCls might sélviable for achieving gaze and space
independence, albeit with simpler tasks that reduceniteg load while sacrificing high
bitrates [35].

Conclusions

The empirical work presented here has provided a catipa assessment of accuracy and
efficacy of RSVP and Matrix P300-based BCI spelleissE two spellers are positioned at
either ends of a spectrum of BCI designs with varyingreles of space independence. We
find that both designs perform equally well in ternisdetecting the user’s selection. Our
comparison dwells on the trade-offs inherent in theiaeh between these designs: fully
space-independent RSVP designs are less efficientynis tef spelling rate, than gaze and
space-dependent Matrix designs. However, RSVP desigrasar less reliant on early space-
dependent VEPs to drive classification accuracy, wicla key consideration for users
unable to shift gaze or attention in space. With ikegrovements to the RSVP design, true
space-independent BCls could approach efficiencies mar with the Matrix speller, making
it a viable alternative for such users.
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